Judicial Decision Data Gathering, Encoding and Sharing

司法决策数据收集、编码和共享

基本信息

  • 批准号:
    EP/Y035992/1
  • 负责人:
  • 金额:
    $ 16.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The overall goal of the CHIST-ERA JuDDGES project is to harness state-of-the-art Natural Language Processing & Human-In-The-Loop technologies to provide legal researchers with new Open software and tools that enable extensive, flexible and on-going meta-annotation capability (both automated and employing domain experts in-the-loop). This capability is applied to legal records/judgments from criminal courts across jurisdictions with varied legal constitutions (Poland, England & Wales).We hence seek to dissolve barriers of resources, language, data & format inhomogeneity that currently impede research on judicial decision making. In making this new software, tools and data resource open on a public repository, researchers will be empowered to develop and empirically test theories of judicial decision making and address judicial policy and practice-relevant questions. Researchers from public (legal) institutions can also reuse the data for their purposes. The application of Open Science hence also rectifies a substantial gap in the empirical legal research domain that has been slow in adopting Open Science principles. The resulting annotated pan-national dataset & toolset will constitute the largest and most comprehensive open and reusable legal research repository in Europe for research on judicial decision-making.This project will develop an AI-based solution (tool) that can be used by researchers to examine unstructured textual data in court records and/or written legal judgments. In doing so, we will create the largest extant pan-national legal dataset in Europe. The tool would allow researchers to access and progressively enrich large, detailed, and representative legal samples of data (starting from what we have made available) in a resource- and cost-effective as well as time-efficient way. The datasets so produced and adjusted to Open Science principles and openly available from a trusted data repository, will also be accessible to others for re-use both within and across legal jurisdictions, including the unexpected researcher/user (e.g., from legal institutions). Indeed, the open software & Human-In-The-Loop (HITL) tools that the project will provide will enable non-AI-specialist ECR researchers to interrogate judicial decision data and identify novel lines of research interrogation. The tool and resultant data will thus expand methodological horizons. In the long-term, our project will contribute to a scientific, evidence-based approach to judicial policy and practice in the courts. The project embodies and exemplifies the principles enshrined within Horizon Europe initiatives on open research data, applying Open Science principles and the utilisation of Open Infrastructures.
CHIST-ERA JudgES项目的总体目标是利用最先进的自然语言处理和人类在环技术,为法律的研究人员提供新的开放软件和工具,实现广泛,灵活和持续的元注释功能(自动化和雇用领域专家在环)。该功能适用于不同法律的宪法(波兰,英格兰和威尔士)的刑事法院的法律的记录/判决。因此,我们寻求消除目前阻碍司法决策研究的资源,语言,数据和格式不均匀性的障碍。在使这个新的软件,工具和数据资源在公共存储库开放,研究人员将有权开发和实证测试司法决策的理论,并解决司法政策和实践相关的问题。来自公共(法律的)机构的研究人员也可以为他们的目的重复使用数据。因此,开放科学的应用也纠正了经验法律的研究领域在采用开放科学原则方面进展缓慢的一个重大差距。由此产生的注释泛国家数据集和工具集将构成欧洲最大和最全面的开放和可重用的法律的研究库,用于司法决策的研究。该项目将开发一个基于AI的解决方案(工具),研究人员可以使用该解决方案(工具)来检查法庭记录和/或书面法律的判决中的非结构化文本数据。在此过程中,我们将创建欧洲现存最大的泛国家法律的数据集。该工具将使研究人员能够以资源有效、成本有效和时间有效的方式访问并逐步丰富大量、详细和有代表性的法律的数据样本(从我们提供的数据开始)。如此生成并调整为开放科学原则并可从可信数据存储库公开获得的数据集也将可供其他人访问,以便在法律的管辖范围内和跨法律管辖范围重复使用,包括意外的研究人员/用户(例如,来自法律的机构)。事实上,该项目将提供的开放式软件和Human-In-The-Loop(HITL)工具将使非人工智能专家的ECR研究人员能够查询司法决策数据,并确定新的研究查询路线。因此,该工具和由此产生的数据将扩大方法的范围。从长远来看,我们的项目将有助于在法院的司法政策和实践中采取科学,以证据为基础的方法。该项目体现并体现了Horizon Europe关于开放研究数据的倡议中所体现的原则,应用了开放科学原则和开放式数据结构的利用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Windridge其他文献

A linear-complexity reparameterisation strategy for the hierarchical bootstrapping of capabilities within perception-action architectures
用于感知-动作架构中能力的分层引导的线性复杂度重新参数化策略
  • DOI:
    10.1016/j.imavis.2008.12.002
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Shevchenko;David Windridge;J. Kittler
  • 通讯作者:
    J. Kittler
Automatic annotation of tennis games: An integration of audio, vision, and learning
网球比赛自动标注:音频、视觉和学习的融合
  • DOI:
    10.1016/j.imavis.2014.08.004
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    F. Yan;J. Kittler;David Windridge;W. Christmas;K. Mikolajczyk;S. Cox;Qiang Huang
  • 通讯作者:
    Qiang Huang
A latent diffusion approach to visual attribution in medical imaging
  • DOI:
    10.1038/s41598-024-81646-x
  • 发表时间:
    2025-01-06
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Ammar Adeel Siddiqui;Santosh Tirunagari;Tehseen Zia;David Windridge
  • 通讯作者:
    David Windridge
The Rapid Decay of the Optical Emission from GRB 980326 and Its Possible Implications
GRB 980326 光发射的快速衰减及其可能的影响
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Groot;T. Galama;P. Vreeswijk;R. Wijers;E. Pian;E. Palazzi;J. van Paradijs;C. Kouveliotou;J. Zand;J. Heise;C. Robinson;N. Tanvir;C. Lidman;C. Tinney;M. Keane;M. Briggs;K. Hurley;J.;P. Hall;M. Smith;R. Covarrubias;P. Jonker;J. Casares;N. Masetti;F. Frontera;M. Feroci;L. Piro;E. Costa;R. Smith;B. Jones;David Windridge;J. Bland;S. Veilleux;M. Garcia;Warren R. Brown;K. Stanek;A. Castro‐Tirado;J. Gorosabel;J. Greiner;K. Jäger;A. Böhm;K. Fricke
  • 通讯作者:
    K. Fricke
Fully-Automated Identification of Imaging Biomarkers for Post-Operative Cerebellar Mutism Syndrome Using Longitudinal Paediatric MRI
使用纵向儿科 MRI 全自动识别术后小脑沉默症候群的影像生物标志物
  • DOI:
    10.1007/s12021-019-09427-w
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    M. Spiteri;Jean;David Windridge;S. Avula;Ram Kumar;E. Lewis
  • 通讯作者:
    E. Lewis

David Windridge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Real-World Emissions Data Decision Tool to achieve Net Zero Mobility
实现净零出行的现实世界排放数据决策工具
  • 批准号:
    10111661
  • 财政年份:
    2024
  • 资助金额:
    $ 16.92万
  • 项目类别:
    SME Support
Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
  • 批准号:
    10114530
  • 财政年份:
    2024
  • 资助金额:
    $ 16.92万
  • 项目类别:
    SME Support
Real-world-data Enabled Assessment for heaLth regulatory decision-Making
现实世界数据支持的健康监管决策评估
  • 批准号:
    10061921
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    EU-Funded
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
  • 批准号:
    MR/Y007816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    Research Grant
REU SITE: From Formal Computer Science Education to Real World Data Science Research to Policy Decision Making
REU 站点:从正规计算机科学教育到现实世界数据科学研究再到政策决策
  • 批准号:
    2244271
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    Standard Grant
Supporting data-driven decision-making to support substance use service expansion policies and to prevent overdoses
支持数据驱动的决策,以支持物质使用服务扩展政策并防止用药过量
  • 批准号:
    10745632
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Establishment of data-driven decision support system of tropical wetland high carbon reservoir by the integration of big satellited data and IoT observation technologies
卫星大数据与物联网观测技术融合,建立数据驱动的热带湿地高碳库决策支持系统
  • 批准号:
    22KJ2226
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Inclusive Data Visualisation for Human-Centred Decision-Making
以人为本的决策的包容性数据可视化
  • 批准号:
    EP/X029697/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    Research Grant
Real-world-data Enabled Assessment for heaLth regulatory decision-Making - REALM
用于健康监管决策的真实数据支持评估 - REALM
  • 批准号:
    10063119
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    EU-Funded
INSAFEDARE: INNOVATIVE APPLICATIONS OF ASSESSMENT AND ASSURANCE OF DATA AND SYNTHETIC DATA FOR REGULATORY DECISION SUPPORT
INSAFEDARE:用于监管决策支持的数据和合成数据评估和保证的创新应用
  • 批准号:
    10066712
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了