Smart Integration of Process Systems Engineering & Machine Learning for Improved Process Safety in Process Industries (PROSAFE)

过程系统工程智能集成

基本信息

  • 批准号:
    EP/Y037111/1
  • 负责人:
  • 金额:
    $ 66.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

PROSAFE proposes a novel doctoral training program in the multidisciplinary field combining machine learning, artificial intelligence, and process systems engineering with domain knowledge of process industry and process safety. PROSAFE will pioneer new foundations by integrating Quantitative Risk Assessment, Process Systems Engineering (PSE) with interpretable machine learning (ML) and artificial intelligence (AI) disciplines as targeted breakthroughs to achieve the objectives. To this end, PROSAFE will develop new synergistic tools and train skilled professionals to address this very important societal, economic, and environmental challenge of safe and sustainable process industries. PROSAFE research objectives are: 1: Harmonize robust QRA methods and implementation strategies for effective and improved risk assessment and process safety 2: Develop AI and ML (interpretable ML) models using domain knowledge for efficient, safe, and reliable operations 3: Develop synergistic integration of model-based with data-based methods for improved process safety operation and monitoring 4: Demonstration and validation of PROSAFE novel concepts and methods on industrial relevant case studies for safer operation PROSAFE's major training objectives are: 1: Training of doctoral candidates (DCs) through individual projects combining multidisciplinary competences in the areas of AI, ML, and PSE within the domain of process safety 2: Establish and pilot the concept of a truly interdisciplinary European multi-center training program in AI/ML, QRA, and PSE within the domain of safety in process industries through relevant network-wide events, courses, workshops, and on-site industry training that complements training in soft skills for effective communication and entrepreneurship. Through this research and training program, PROSAFE will contribute to realizing the promising potential of the new artificial intelligence paradigm with a particular focus on process safety in process industries.
PROSAFE提出了一个新的博士培训计划,在多学科领域结合机器学习,人工智能和过程系统工程与过程工业和过程安全的领域知识。PROSAFE将通过将定量风险评估、过程系统工程(PSE)与可解释的机器学习(ML)和人工智能(AI)学科相结合,开拓新的基础,作为实现目标的有针对性的突破。为此,PROSAFE将开发新的协同工具,并培训熟练的专业人员,以应对安全和可持续过程工业的这一非常重要的社会,经济和环境挑战。PROSAFE的研究目标是:一曰:协调可靠的QRA方法和实施策略,以实现有效和改进的风险评估和流程安全2:开发AI和ML 3.开发基于模型的方法与基于数据的方法的协同集成,以改进过程安全操作和监控4:示范和验证PROSAFE的新概念和方法在工业相关的案例研究,以更安全的操作PROSAFE的主要培训目标是:1:通过结合过程安全领域内AI、ML和PSE领域多学科能力的单个项目培训博士生(DC)2:通过相关的网络范围内的活动,课程,研讨会和现场行业培训,在过程工业安全领域内建立和试点真正跨学科的欧洲多中心培训计划的概念,以补充有效沟通和创业的软技能培训。通过这项研究和培训计划,PROSAFE将有助于实现新的人工智能范式的巨大潜力,特别关注过程工业的过程安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alessandra Russo其他文献

Speculative Constraint Processing for Hierarchical Agents
分层代理的推测约束处理
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Hosobe;Ken Satoh;Jiefei Ma;Alessandra Russo;Krysia Broda
  • 通讯作者:
    Krysia Broda
Approximated Winner Determination for a Series of Combinatorial Auctions
一系列组合拍卖的近似获胜者确定
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Hosobe;Ken Satoh;Jiefei Ma;Alessandra Russo;Krysia Broda;Naoki Fukuta
  • 通讯作者:
    Naoki Fukuta
Drug Safety Information Through the Internet
  • DOI:
    10.2165/00002018-200932030-00007
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Giovanni Polimeni;Alessandra Russo;Maria Antonietta Catania;Andrea Aiello;Alessandro Oteri;Gianluca Trifirò;Gioacchino Calapai;Lidia Sautebin;Massimo Iacobelli;Achille P. Caputi
  • 通讯作者:
    Achille P. Caputi
Conceptual design of a biped-wheeled wearable machine for ALS patients
针对 ALS 患者的双足轮可穿戴机器的概念设计
  • DOI:
    10.1007/s00415-023-11678-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    G. G. Muscolo;F. Di Pede;L. Solero;Angelo Nicolì;Alessandra Russo;P. Fiorini;A. Chiò;A. Calvo;A. Canosa
  • 通讯作者:
    A. Canosa
El encuentro de dos mundos artísticos en el arte plumario mexicano del Siglo XVI
十六世纪墨西哥羽毛艺术
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandra Russo
  • 通讯作者:
    Alessandra Russo

Alessandra Russo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alessandra Russo', 18)}}的其他基金

Privacy Dynamics: Learning from the Wisdom of Groups
隐私动态:从群体的智慧中学习
  • 批准号:
    EP/K033425/1
  • 财政年份:
    2013
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Research Grant

相似海外基金

DIGINTRACE:A Digital value chain Integration Traceability framework for process industries for Circularity and low Emissions by waste reduction and use of secondary raw materials
DIGINTRACE:流程工业的数字价值链集成追溯框架,通过减少废物和使用二次原材料实现循环和低排放
  • 批准号:
    10061918
  • 财政年份:
    2023
  • 资助金额:
    $ 66.43万
  • 项目类别:
    EU-Funded
The Role of Diet in the Process of Long Term Cultural Integration.
饮食在长期文化融合过程中的作用。
  • 批准号:
    2312349
  • 财政年份:
    2023
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Standard Grant
Designing learning support strategy based on analysis of knowledge integration process in STEAM education
基于STEAM教育知识整合过程分析的学习支持策略设计
  • 批准号:
    23K02770
  • 财政年份:
    2023
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical and empirical examination of the information integration process that produces reputational information used in generalized exchange
对产生用于广义交换的声誉信息的信息集成过程进行理论和实证检验
  • 批准号:
    22H00086
  • 财政年份:
    2022
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Sensory motor integration in the recovery process of tongue function – exploring the active touch -
舌头功能恢复过程中的感觉运动统合
  • 批准号:
    22K10053
  • 财政年份:
    2022
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathways for Integration and Evaluation of Body Composition and Energy Metabolism Assessments throughout the Nutrition Care Process
整个营养护理过程中身体成分和能量代谢评估的整合和评估途径
  • 批准号:
    460998
  • 财政年份:
    2022
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Miscellaneous Programs
Design, manufacturing and process integration of nano-structured carbon enhanced lightweight composites
纳米结构碳增强轻质复合材料的设计、制造和工艺集成
  • 批准号:
    507140-2016
  • 财政年份:
    2022
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Collaborative Research and Development Grants
VPI Soft Sensors: a software suite for the design, calibration and real-time integration of software predictors of unmeasurable industrial process data
VPI 软传感器:用于不可测量工业过程数据的软件预测器的设计、校准和实时集成的软件套件
  • 批准号:
    10000484
  • 财政年份:
    2021
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Specific Energy-Based Prognosis for Machining Surface Integrity through Integration of Process Physics and Machine Learning
合作研究:通过过程物理和机器学习的集成,基于特定能量的加工表面完整性预测
  • 批准号:
    2040288
  • 财政年份:
    2021
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Standard Grant
Integration of bio-carbon in the formulation of carbon electrodes for metallurgical processes- Al smelting process
将生物碳整合到冶金工艺(铝冶炼工艺)的碳电极配方中
  • 批准号:
    RGPIN-2017-04827
  • 财政年份:
    2021
  • 资助金额:
    $ 66.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了