TSAR: Trustworthy Search And Rescue uncrewed aerial vehicle

TSAR:值得信赖的搜救无人驾驶飞行器

基本信息

  • 批准号:
    EP/Z001102/1
  • 负责人:
  • 金额:
    $ 26.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Recent disasters around the globe, natural and manmade, claimed over a million lives and cost trillions of dollars in economic losses. Although disasters may not be prevented, rescue operations can considerably reduce the loss of life. Search And Rescue (SAR) is the foremost mission to be swiftly carried out in the aftermath of a disaster. First responders' search efforts in disaster situations, especially in contested areas (obstacles and foggy conditions) and war zones, are slow as they thoroughly examine the surroundings to avoid unnecessary debris shifts while protecting themselves. The existing state-of-the-art SAR Uncrewed Aerial Vehicles (UAVs) can only identify people in open areas using Artificial Intelligence (AI) algorithms. The proposed project, TSAR (Trustworthy SAR UAV), intends to develop an intelligent, trustworthy, reliable, and cost-effective SAR UAV that locates victims in contested areas and assesses their health. Such a UAV can expedite the search process and prioritize rescue missions for multiple casualties, enhancing successful rescue and saving lives. TSAR's research objectives: 1) Design a novel UAV for SAR operations considering vertical take-off and landing capability, high endurance and range, maneuverability, fault tolerance, and reliability factors; 2) Develop innovative computer vision algorithms to separate the contested areas from open areas, and adapt Voronoi tessellations to generate low-altitude search trajectories in the open areas to get a closer look at the contested areas; 3) Develop multimodal AI algorithms to fuse and process the data from the auditory and visual sensors to geo-locate victims; 4) Non-disruptive health check maneuvers providing maximum visual coverage of victims and their health status via a novel algorithm by analyzing heat signatures; and 5) TSAR's trustworthiness will be achieved by considering legal, ethical, system and human elements embedded through design, development and testing phases.
最近在地球仪发生的自然和人为灾害夺去了100多万人的生命,造成了数万亿美元的经济损失。虽然灾害可能无法预防,但救援行动可以大大减少生命损失。搜救(SAR)是灾难发生后迅速执行的首要使命。第一反应者在灾害情况下的搜索工作,特别是在有争议的地区(障碍物和雾的条件)和战区,是缓慢的,因为他们彻底检查周围环境,以避免不必要的碎片转移,同时保护自己。现有的最先进的SAR无人机(UAV)只能使用人工智能(AI)算法识别开放区域中的人。该项目名为TSAR(Trustworthy SAR UAV),旨在开发一种智能、可靠、可靠且具有成本效益的SAR UAV,用于在有争议的地区定位受害者并评估他们的健康状况。这样的无人机可以加快搜索过程,并优先考虑多名伤亡人员的救援任务,从而提高救援成功率并挽救生命。TSAR的研究目标:1)设计一种新型的无人机用于SAR作战,考虑垂直起降能力、高续航力和航程、机动性、容错性和可靠性等因素; 2)开发创新的计算机视觉算法,将有争议的区域与开放区域分开,并采用Voronoi细分法生成开放区域的低空搜索轨迹,以更近距离地观察有争议的区域; 3)开发多模式人工智能算法,融合和处理来自听觉和视觉传感器的数据,以地理定位受害者; 4)通过分析热特征,通过新算法提供最大限度的受害者及其健康状况的视觉覆盖,实现无中断的健康检查演习; 5)TSAR的可信度将通过考虑设计、开发和测试阶段嵌入的法律的、道德、系统和人的因素来实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ardhendu Behera其他文献

Cognitive Workflow Capturing and Rendering with On-Body Sensor Networks (COGNITO)
使用体上传感器网络 (COGNITO) 进行认知工作流程捕获和渲染
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabriele Bleser;Luis Almeida;Ardhendu Behera;Andrew Calway;Anthony Cohn;D. Damen;Hugo Domingues;Andrew Gee;Dominic Gorecky;David Hogg;Michael Kraly;Trivisio Prototyping;GmbH;Germany Gustavo;Maçães;Frédéric Marin;Walterio W. Mayol;M. Miezal;K. Mura;Nils Petersen;N. Vignais;Luís Paulo;Santos;G. Spaas;Germany Gmbh;Stricker
  • 通讯作者:
    Stricker
Deep CNN, Body Pose, and Body-Object Interaction Features for Drivers’ Activity Monitoring
用于驾驶员活动监控的深度 CNN、身体姿势和身体-物体交互功能
Context-driven Multi-stream LSTM (M-LSTM) for Recognizing Fine-Grained Activity of Drivers
用于识别驾驶员细粒度活动的上下文驱动多流 LSTM (M-LSTM)
  • DOI:
    10.1007/978-3-030-12939-2_21
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ardhendu Behera;Alexander Keidel;Bappaditya Debnath
  • 通讯作者:
    Bappaditya Debnath
A CNN Model for Head Pose Recognition using Wholes and Regions
使用整体和区域进行头部姿势识别的 CNN 模型
Interweaving Insights: High-Order Feature Interaction for Fine-Grained Visual Recognition
  • DOI:
    10.1007/s11263-024-02260-y
  • 发表时间:
    2024-10-20
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Arindam Sikdar;Yonghuai Liu;Siddhardha Kedarisetty;Yitian Zhao;Amr Ahmed;Ardhendu Behera
  • 通讯作者:
    Ardhendu Behera

Ardhendu Behera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ardhendu Behera', 18)}}的其他基金

ATRACT: A Trustworthy Robotic Autonomous system to support Casualty Triage
ATRACT:一个值得信赖的机器人自主系统,支持伤员分类
  • 批准号:
    EP/X028631/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Research Grant

相似海外基金

Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404952
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Standard Grant
REU Site: Embracing Blockchain for a Secure and Trustworthy Tomorrow
REU 网站:拥抱区块链,打造安全可信的明天
  • 批准号:
    2349042
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Standard Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
  • 批准号:
    10109582
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    EU-Funded
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Research Grant
CAREER: Secure and Trustworthy Intent-Based Networking
职业:安全且值得信赖的基于意图的网络
  • 批准号:
    2339882
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404950
  • 财政年份:
    2024
  • 资助金额:
    $ 26.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了