Cryptosporidium Artificial Intelligence Network Analysis of Drug Action (CANADA)

隐孢子虫药物作用人工智能网络分析(加拿大)

基本信息

  • 批准号:
    EP/Z532885/1
  • 负责人:
  • 金额:
    $ 18.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Bringing a new drug to market can take up to twelve years and cost 2.6 billion USD (a 140 percent increase in the past ten years), with a total drug development cost up to $60 billion/year. This is far from being sustainable or accessible and creates an economic barrier that prevents pharmaceutical companies from investing in non-lucrative and yet very important "fields of research in domains including pandemic prevention and antimicrobial resistance, with major current and future costs for society". ["Artificial Intelligence for Public Good Drug Discovery", GPAI, 2021]. In this project, we share the long-term vision of removing this barrier, sharing the McKinsey vision of an urgent need to "transform R&D for new-drug development holistically-500 days faster, better tailored to patient needs, and 25 percent cheaper".With this long-term goal in mind, this project focuses on developing a proof-of-concept for overcoming the bottleneck in the drug development process, which is the testing of new compounds for parasitic diseases. Traditionally, this testing process has been labour and resource intensive. The proposed solution is to develop an AI-based drug design system that automates the process of predicting the effect of existing compounds on protein-protein interaction networks. This system will use machine learning algorithms to analyse the interactions between proteins and predict the drug action. By understanding these interactions, the system will be able to identify compounds that can effectively target key genes in the network while minimising toxicity. The project will specifically focus on testing this AI-based drug design system on the Cryptosporidium parvum parasite, which is a gastrointestinal parasite which causes diarrhoea, malnutrition, and sometimes death particularly in children. The hypotheses and methods used in this project are based on previous studies conducted by the Principal Investigators (PIs) and will be further refined and tested using proven biological approaches.The ultimate goal of this project is to develop a system that can predict which compounds will be the most effective in treating parasitic diseases with the minimum levels of toxicity to the host
将新药带到市场上可能需要长达十二年,并且耗资26亿美元(在过去十年中增长了140%),总药物开发耗资高达600亿美元/年。这远非可持续或易于使用,并且创造了一种经济障碍,该障碍可以防止制药公司投资于非持续性但非常重要的“研究领域的研究领域,包括大流行预防和抗菌素抵抗,并具有重大的社会和未来成本”。 [“公共良好药物发现的人工智能”,GPAI,2021年]。 In this project, we share the long-term vision of removing this barrier, sharing the McKinsey vision of an urgent need to "transform R&D for new-drug development holistically-500 days faster, better tailored to patient needs, and 25 percent cheaper".With this long-term goal in mind, this project focuses on developing a proof-of-concept for overcoming the bottleneck in the drug development process, which is the testing of new compounds for parasitic疾病。传统上,这种测试过程是劳动和资源密集型。提出的解决方案是开发一种基于AI的药物设计系统,该系统可以自动化预测现有化合物对蛋白质 - 蛋白质相互作用网络的影响的过程。该系统将使用机器学习算法来分析蛋白质之间的相互作用并预测药物作用。通过了解这些相互作用,系统将能够识别可以有效靶向网络中关键基因的化合物,同时最小化毒性。该项目将特别着重于在隐孢子虫寄生虫上测试该基于AI的药物设计系统,该系统是一种胃肠道寄生虫,会导致腹泻,营养不良,有时甚至在儿童中死亡。该项目中使用的假设和方法是基于先前的主要研究者(PIS)进行的研究,并将使用经过验证的生物学方法进一步完善和测试。该项目的最终目标是开发一种可以预测哪些化合物对寄生疾病的最小毒性水平,该系统最有效

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura TONI其他文献

Laura TONI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura TONI', 18)}}的其他基金

EPSRC-SFI: SpheryStream
EPSRC-SFI:SpheryStream
  • 批准号:
    EP/T03324X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Research Grant

相似国自然基金

基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HESX1-DNMT1-CDKN1C轴介导HIV-1 Nef抑制人造血干细胞功能的机制研究
  • 批准号:
    82360391
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人造血管与宿主组织顺应性不匹配诱导的吻合处应力对血管组织改重建的影响研究
  • 批准号:
    12372311
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了