Computational approaches to cognition: the origins of social and causal reasoning in children and primates

认知的计算方法:儿童和灵长类动物社会和因果推理的起源

基本信息

  • 批准号:
    ES/K009540/1
  • 负责人:
  • 金额:
    $ 30.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Imagine watching as a fellow traveler approaches a ticket machine, rubs a pound coin carefully on the machine's side, and then inserts it into a slot before retrieving a ticket. When it's your turn, what do you do? Inserting a coin seems important, but perhaps you would rub it first too - after all, that guy must have had a reason to do so. From an early age, children are quick to copy another's action, and from very little feedback they can screen off unnecessary actions and focus on what works. But in a context like this they usually copy all the actions in a sequence, even those that seem unlikely to matter. Chimpanzees don't do this: if they can see that an action is pointless, they don't copy it. Of course, both species are intensely social beings, and their causal learning takes place in a rich social context. A natural question is therefore how social interaction informs and influences learning. But surprisingly, we know very little about how an actor's intentions and the observer's prior physical knowledge feed into children's causal judgments, and still less about how, if at all, our primate relatives take advantage of either source of information. We propose to try and disentangle how learners of different primate species, including our own, weigh these sources of information when they decide what to copy. We will first use a computational model that tries to predict how learners should learn from different kinds of evidence. We will then conduct a study examining what learners of different species actually do. In the study, some participants will see two purposeful actions precede an outcome (as in the man rubbing and then inserting the coin). Others will witness the same two actions, but the demonstrator will appear to produce the outcome accidentally (e.g. ignoring the ticket, and continuing to explore the environment). A third group will see a pedagogical demonstration (imagine the man catching your eye and pointing at the coin before rubbing it: would you be more likely to copy him?). Cutting across this comparison, we will vary mechanical plausibility. For half of the learners the first action will be particularly unlikely to have causal power (imagine the man rubbing one coin and then inserting a different one). We will measure the tendency of children, apes and monkeys to produce the two actions after the demonstrations. If they integrate some prior physical knowledge, they will be less likely to copy both actions if one is mechanically implausible. However, if they integrate social knowledge, they should be more likely to copy both actions if the actor did them on purpose, and this may lead them to override any previous bias. Follow up studies will look at related questions, such as how different primate species learn to cooperate and coordinate joint behaviors. (Think of helping someone move a heavy sofa. Both people not only have the shared overall goal of getting the sofa out, they have intermediate goals like avoiding bumping into the walls or getting stuck in doorways, and each person has a separate role in achieving those goals). The fact is that although all primate infants seem to learn from observation, something about human children is different, and allows them to acquire a working knowledge of the multitude of artifacts developed in their culture, from crayons to ipads, with breathtaking speed. Meanwhile other primates such as chimpanzees spend several years getting to grips with just a few skills, such as the use of a hammer stone to crack nuts, despite many hours of close observation. Understanding what differs may give us helpful insights into what sorts of things children are uniquely adapted to learn. The research will therefore provide important insights into how children learn from teachers, both formally in the classroom and informally in the world.
想象一下,一位旅伴走近售票机,小心地在机器侧面摩擦一枚一英镑硬币,然后将其插入投币口,然后取票。当轮到你的时候,你会做什么?插入一枚硬币似乎很重要,但也许你也会先摩擦它——毕竟,那家伙一定有这样做的理由。从很小的时候起,孩子们就会很快地模仿别人的行为,并且通过很少的反馈,他们可以筛选掉不必要的行为并专注于有效的行为。但在这样的情况下,他们通常会复制一个序列中的所有动作,即使是那些看起来不太重要的动作。黑猩猩不会这样做:如果它们发现某个动作毫无意义,它们就不会模仿。当然,这两个物种都是高度社会化的生物,它们的因果学习发生在丰富的社会背景中。因此,一个自然的问题是社交互动如何影响学习。但令人惊讶的是,我们对行动者的意图和观察者先前的物理知识如何影响儿童的因果判断知之甚少,更不知道我们的灵长类亲戚如何(如果有的话)如何利用这两种信息来源。我们建议尝试理清不同灵长类动物(包括我们自己的灵长类动物)的学习者在决定复制什么时如何权衡这些信息来源。我们将首先使用一个计算模型来尝试预测学习者应该如何从不同类型的证据中学习。然后我们将进行一项研究,考察不同物种的学习者实际上做了什么。在研究中,一些参与者会看到在产生结果之前有两个有目的的行为(例如男子摩擦然后插入硬币)。其他人会目睹相同的两个动作,但演示者似乎会意外地产生结果(例如,忽略票证,并继续探索环境)。第三组将观看教学演示(想象一下,那个人在摩擦硬币之前引起了您的注意并指着硬币:您是否更有可能模仿他?)。通过这种比较,我们将改变机械合理性。对于一半的学习者来说,第一个动作特别不可能具有因果力(想象一下一个人摩擦一枚硬币,然后插入另一枚硬币)。我们将测量儿童、猿类和猴子在演示后产生这两种动作的倾向。如果他们整合了一些先前的物理知识,那么如果其中一个动作在机械上不可信,他们就不太可能复制这两个动作。然而,如果他们整合社会知识,如果演员是故意的,他们应该更有可能复制这两种行为,这可能会导致他们推翻之前的任何偏见。后续研究将探讨相关问题,例如不同灵长类动物如何学会合作和协调联合行为。 (想象一下帮助某人搬动一张沉重的沙发。两个人不仅有将沙发搬出来的共同总体目标,而且还有避免撞到墙壁或卡在门口等中间目标,并且每个人在实现这些目标方面都有自己的角色)。事实是,尽管所有灵长类婴儿似乎都是通过观察来学习的,但人类儿童却有所不同,这使得他们能够以惊人的速度获得其文化中开发的大量人工制品的实用知识,从蜡笔到 iPad。与此同时,黑猩猩等其他灵长类动物花费了数年时间才掌握了一些技能,例如使用锤子敲碎坚果,尽管经过了数小时的密切观察。了解不同之处可能有助于我们了解儿童独特地适合学习哪些事物。因此,这项研究将为孩子们如何在正式的课堂上和非正式的世界上向老师学习提供重要的见解。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can children balance the size of a majority with the quality of their information?
孩子们能否平衡多数人的规模与信息的质量?
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hu JC
  • 通讯作者:
    Hu JC
Do Children Copy an Expert or a Majority? Examining Selective Learning in Instrumental and Normative Contexts.
  • DOI:
    10.1371/journal.pone.0164698
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Burdett ER;Lucas AJ;Buchsbaum D;McGuigan N;Wood LA;Whiten A
  • 通讯作者:
    Whiten A
Sensitivity to Shared Information in Social Learning.
对社交学习中共享信息的敏感性。
  • DOI:
    10.1111/cogs.12485
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Whalen A
  • 通讯作者:
    Whalen A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daphna Buchsbaum其他文献

Daphna Buchsbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
  • 批准号:
    10746646
  • 财政年份:
    2023
  • 资助金额:
    $ 30.85万
  • 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
  • 批准号:
    10879238
  • 财政年份:
    2023
  • 资助金额:
    $ 30.85万
  • 项目类别:
Training in theoretical and computational approaches to neural circuits of cognition
认知神经回路的理论和计算方法培训
  • 批准号:
    10626364
  • 财政年份:
    2023
  • 资助金额:
    $ 30.85万
  • 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
  • 批准号:
    10476677
  • 财政年份:
    2021
  • 资助金额:
    $ 30.85万
  • 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
  • 批准号:
    10490346
  • 财政年份:
    2021
  • 资助金额:
    $ 30.85万
  • 项目类别:
Measuring arterial material properties using wave-based approaches with ultrasound and computational models
使用基于波的超声方法和计算模型测量动脉材料特性
  • 批准号:
    10585221
  • 财政年份:
    2019
  • 资助金额:
    $ 30.85万
  • 项目类别:
Workshop on Integrating Approaches to Computational Cognition
计算认知集成方法研讨会
  • 批准号:
    1322079
  • 财政年份:
    2013
  • 资助金额:
    $ 30.85万
  • 项目类别:
    Standard Grant
COMPUTATIONAL THINKING-Novel Machine Learning Approaches for Automati
计算思维——自动化的新型机器学习方法
  • 批准号:
    8173654
  • 财政年份:
    2010
  • 资助金额:
    $ 30.85万
  • 项目类别:
CRCNS: Physiological and Computational Approaches to Understanding Neuronal Synch
CRCNS:理解神经元同步的生理学和计算方法
  • 批准号:
    7673791
  • 财政年份:
    2006
  • 资助金额:
    $ 30.85万
  • 项目类别:
CRCNS: Physiological and Computational Approaches to Understanding Neuronal Synch
CRCNS:理解神经元同步的生理学和计算方法
  • 批准号:
    7271279
  • 财政年份:
    2006
  • 资助金额:
    $ 30.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了