Learning an urban grammar from satellite data through AI

通过人工智能从卫星数据学习城市语法

基本信息

  • 批准号:
    ES/T005238/1
  • 负责人:
  • 金额:
    $ 44.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will propose an urban grammar to describe urban form and will develop artificial intelligence (AI) techniques to learn such a grammar from satellite imagery. Urban form has critical implications for economic productivity, social (in)equality, and the sustainability of both local finances and the environment. Yet, current approaches to measuring the morphology of cities are fragmented and coarse, impeding their appropriate use in decision making and planning. This project will aim to: 1) conceptualise an urban grammar to describe urban form as a combination of "spatial signatures", computable classes describing a unique spatial pattern of urban development (e.g. "fragmented low density", "compact organic", "regular dense"); 2) develop a data-driven typology of spatial signatures as building blocks; 3) create AI techniques that can learn signatures from satellite imagery; and 4) build a computable urban grammar of the UK from high-resolution trajectories of spatial signatures that helps us understand its future evolution.This project proposes to make the conceptual urban grammar computable by leveraging satellite data sources and state-of-the-art machine learning and AI techniques. Satellite technology is undergoing a revolution that is making more and better data available to study societal challenges. However, the potential of satellite data can only be unlocked through the application of refined machine learning and AI algorithms. In this context, we will combine geodemographics, deep learning, transfer learning, sequence analysis, and recurrent neural networks. These approaches expand and complement traditional techniques used in the social sciences by allowing to extract insight from highly unstructured data such as images. In doing so, the methodological aspect of the project will develop methods that will set the foundations of other applications in the social sciences.The framework of the project unfolds in four main stages, or work packages (WPs):1) Data acquisition - two large sets of data will be brought together and spatially aligned in a consistent database: attributes of urban form, and satellite imagery.2) Development of a typology of spatial signatures - Using the urban form attributes, geodemographics will be used to build a typology of spatial signatures for the UK at high spatial resolution.3) Satellite imagery + AI - The typology will be used to train deep learning and transfer learning algorithms to identify spatial signatures automatically and in a scalable way from medium resolution satellite imagery, which will allow us to back cast this approach to imagery from the last three decades.4) Trajectory analysis - Using sequences of spatial signatures generated in the previous package, we will use machine learning to identify an urban grammar by studying the evolution of urban form in the UK over the last three decades.Academic outputs include journal articles, open source software, and open data products in an effort to reach as wide of an academic audience as possible, and to diversify the delivery channel so that outputs provide value in a range of contexts. The impact strategy is structured around two main areas: establishing constant communication with stakeholders through bi-directional dissemination; and data insights broadcast, which will ensure the data and evidence generated reach their intended users.
该项目将提出一种描述城市形态的城市语法,并将开发人工智能(AI)技术,以从卫星图像中学习这种语法。城市形态对经济生产力、社会平等以及地方财政和环境的可持续性具有重要影响。然而,目前衡量城市形态的方法是支离破碎和粗糙的,阻碍了它们在决策和规划中的适当使用。该项目的目标是:1)将城市语法概念化,将城市形态描述为“空间签名”的组合,即描述城市发展的独特空间模式的可计算类别(例如,“碎片化的低密度”、“紧凑的有机”、“规则密集的”);2)开发数据驱动的空间签名类型学作为构件;3)创建能够从卫星图像学习签名的人工智能技术;4)从空间特征的高分辨率轨迹构建英国的可计算城市语法,帮助我们了解其未来的演变。该项目提出通过利用卫星数据源和最先进的机器学习和人工智能技术来使概念性城市语法可计算。卫星技术正在经历一场革命,正在提供更多更好的数据来研究社会挑战。然而,卫星数据的潜力只有通过精细化的机器学习和AI算法的应用才能释放出来。在此背景下,我们将结合地理人口学、深度学习、迁移学习、序列分析和递归神经网络。这些方法扩展和补充了社会科学中使用的传统技术,允许从高度非结构化的数据(如图像)中提取洞察力。在这样做的过程中,该项目的方法论方面将制定方法,为社会科学的其他应用奠定基础。该项目的框架分四个主要阶段展开,即工作包(WPS):1)数据采集--两大组数据将汇集在一起,并在一致的数据库中进行空间排列:城市形态属性和卫星图像。2)发展空间特征的类型学--使用城市形态属性,地理人口学将被用来为英国在高空间分辨率下建立空间特征的类型。3)卫星图像+人工智能-该类型将被用于训练深度学习和迁移学习算法,以从中分辨率卫星图像以可扩展的方式自动识别空间特征,这将使我们能够将这种方法倒回到过去30年的图像中。4)轨迹分析-使用上一包中生成的空间特征序列,我们将使用机器学习通过研究英国过去三年城市形态的演变来识别城市语法。学术成果包括期刊文章、开源软件、和开放数据产品,以努力接触到尽可能广泛的学术受众,并使交付渠道多样化,以便产出在一系列背景下提供价值。影响战略围绕两个主要领域构建:通过双向传播与利益攸关方建立持续的沟通;以及传播数据见解,这将确保产生的数据和证据到达目标用户手中。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geographical characterisation of British urban form and function using the spatial signatures framework.
  • DOI:
    10.1038/s41597-022-01640-8
  • 发表时间:
    2022-09-07
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Fleischmann, Martin;Arribas-Bel, Daniel
  • 通讯作者:
    Arribas-Bel, Daniel
Open data products-A framework for creating valuable analysis ready data.
  • DOI:
    10.1007/s10109-021-00363-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Arribas-Bel D;Green M;Rowe F;Singleton A
  • 通讯作者:
    Singleton A
Spatial Signatures - Understanding (urban) spaces through form and function
空间特征 - 通过形式和功能理解(城市)空间
  • DOI:
    10.1016/j.habitatint.2022.102641
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Arribas-Bel D
  • 通讯作者:
    Arribas-Bel D
Evolution of Urban Patterns: Urban Morphology as an Open Reproducible Data Science
  • DOI:
    10.1111/gean.12302
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Martin Fleischmann;Alessandra Feliciotti;W. Kerr
  • 通讯作者:
    Martin Fleischmann;Alessandra Feliciotti;W. Kerr
GIS and Computational Notebooks
GIS 和计算笔记本
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Arribas-Bel其他文献

Decoding (urban) form and function using spatially explicit deep learning
  • DOI:
    10.1016/j.compenvurbsys.2024.102147
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Martin Fleischmann;Daniel Arribas-Bel
  • 通讯作者:
    Daniel Arribas-Bel

Daniel Arribas-Bel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转型时期中国城市公共服务业管治模式的地理学研究
  • 批准号:
    40701051
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
中国的城市变化及其自组织的空间动力学
  • 批准号:
    40335051
  • 批准年份:
    2003
  • 资助金额:
    90.0 万元
  • 项目类别:
    重点项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Studentship
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Thermoregulatory evolution of hummingbirds: Using urban heat islands as a globally replicated natural experiment
NSF PRFB 2023 财年:蜂鸟的体温调节进化:利用城市热岛作为全球复制的自然实验
  • 批准号:
    2305367
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Fellowship Award
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Fellowship
Tackling Youth Loneliness in Urban Areas: Measuring feasibility, acceptability and benefits of a social interaction intervention
解决城市地区青少年的孤独感:衡量社交互动干预的可行性、可接受性和益处
  • 批准号:
    ES/Z502522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Research Grant
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
Customisable Urban Model for Quantifiable Thermal Observations (CUMQUAT)
用于可量化热观测的可定制城市模型 (CUMQUAT)
  • 批准号:
    EP/X041999/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Research Grant
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
  • 批准号:
    MR/Y020014/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Fellowship
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
M-PACE: Establishing an Urban PACE towards Cultivating Healthy Diets for All Communities
M-PACE:建立城市 PACE,为所有社区培养健康饮食
  • 批准号:
    BB/Z514408/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了