Experiments on the effects of trading algorithms on financial markets
交易算法对金融市场影响的实验
基本信息
- 批准号:ES/T006048/1
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algorithmic trading, where computers rather than humans execute trades within milliseconds of receiving information, has been on the rise for years. Some authors estimate that 70% of trades in the US are executed by algorithms (Swinburne 2010), with others going up to 85% (Glantz & Kissel 2013). Algorithmic trading has thus had a significant impact on all developed financial markets, but its effects are not yet well recognised; an improved understanding of this relatively new and shifting phenomenon is essential to inform policy debates, such as whether algorithmic trading needs to comply with stricter rules to prevent excess volatility or the formation of asset bubbles. The aim of this project is to answer fundamental questions on the effects of algorithmic trading on financial markets; specifically, whether algorithms trained by state-of-the-art machine learning techniques increase or decrease the likelihood of asset bubbles, whether they increase or decrease volatility and risk in markets, and indeed how such algorithms look like in the first place. That latter question is simple yet not easy to answer, because successful trading algorithms are valuable and therefore kept confidential for fear of them being copied, exploited, or regulated. Another difficulty is that causal effects are notoriously difficult to establish with field data from financial markets, in part because it is typically not even determinable which trades are executed by algorithms in anonymous markets.For these reasons, I will answer these questions with laboratory experiments, where I let human traders and algorithmic traders interact in small lab markets. The advantage of the method is that causal effects can be convincingly established: A control group with only human traders can be compared to a treatment group with algorithmic traders along various outcome measures such as bubble frequency, volatility/risk, or liquidity/trading speed, all else equal. Moreover, every action is observable in the lab, so specific trades can be classified as being initiated by algorithms or humans. It also allows me to investigate which kinds of algorithms evolve when learning against human traders, or against other algorithms in the market.One class of market used in the lab will let subjects/algorithms trade multiple units of a finanical asset. This asset pays out a dividend to the holder at the end of each of 15 rounds. Because there are fewer dividend payoffs remaining in later rounds, the fundamental value of the asset is decreasing over time. Yet in previous experiments with human traders, financial bubbles frequently arose where prices increased dramatically despite the decreasing asset value, which is the bubble pattern also observed in stock or housing markets. This experimental market setting is therefore useful to study bubble formation and causes of bubbles, but so far there is no research on the effect of algorithmic trading in this context.In another class of experimental market, I will introduce news about the value of assets during financial market trading, and observe how traders and algorithms respond to such news shocks. In particular, the main question is whether a sufficient number of trend-following algorithms can lead to drastic drops or increases in prices, thus increasing volatility and risk in markets, or whether algorithms may actually stabilise markets.The research findings will inform policy formulation and have significant impact potential. Determining the role that algorithms play in market events such as financial bubbles and 'flash crashes', where prices drop swiftly without apparent cause or news, only to bounce back shortly afterwards, will assist the finance and regulatory sector in deciding whether invention or regulatory changes are required. The experiments are also a good and inexpensive tool to test the effectiveness of new policy measures or regulations.
算法交易(Algorithmic trading)是指计算机而非人类在接收到信息的几毫秒内执行交易,多年来一直呈上升趋势。一些作者估计,美国70%的交易是由算法执行的(Swinburne 2010),其他人则高达85% (Glantz & Kissel 2013)。因此,算法交易对所有发达金融市场都产生了重大影响,但其影响尚未得到充分认识;更好地理解这种相对较新的、不断变化的现象,对于为政策辩论提供信息至关重要,比如算法交易是否需要遵守更严格的规则,以防止过度波动或资产泡沫的形成。这个项目的目的是回答关于算法交易对金融市场影响的基本问题;具体来说,通过最先进的机器学习技术训练的算法是否增加或减少了资产泡沫的可能性,它们是否增加或减少了市场的波动性和风险,以及这些算法最初是什么样的。后一个问题很简单,但不容易回答,因为成功的交易算法是有价值的,因此要保密,以免被复制、利用或监管。另一个困难是,众所周知,很难用金融市场的现场数据来确定因果关系,部分原因是,在匿名市场中,甚至无法确定哪些交易是由算法执行的。出于这些原因,我将通过实验室实验来回答这些问题,在那里我让人类交易者和算法交易者在小型实验室市场中互动。该方法的优势在于,因果关系可以令人信服地建立起来:一个只有人类交易者的对照组可以与一个有算法交易者的治疗组进行比较,根据各种结果衡量指标,如泡沫频率、波动性/风险、流动性/交易速度,其他条件相同。此外,每一个动作都可以在实验室中观察到,因此特定的交易可以被分类为由算法或人类发起的。它还允许我研究在与人类交易员或市场上的其他算法学习时,哪种算法会进化。实验室中使用的一类市场将允许受试者/算法交易多个金融资产单位。该资产在每15轮结束时向持有人支付股息。由于在以后的几轮中剩余的股息越来越少,资产的基本价值随着时间的推移而减少。然而,在之前对人类交易员的实验中,金融泡沫经常出现在价格大幅上涨的地方,尽管资产价值在下降,这种泡沫模式也在股市或楼市中观察到。因此,这种实验市场设置有助于研究泡沫的形成和泡沫的原因,但到目前为止,还没有研究算法交易在这种情况下的影响。在另一类实验市场中,我将引入金融市场交易中有关资产价值的新闻,并观察交易者和算法如何应对这种新闻冲击。特别是,主要问题是,足够数量的趋势跟踪算法是否会导致价格急剧下跌或上涨,从而增加市场的波动性和风险,或者算法是否实际上可以稳定市场。研究结果将为政策制定提供信息,并具有重大影响潜力。确定算法在金融泡沫和“闪电崩盘”等市场事件中所扮演的角色,将有助于金融和监管部门决定是否需要发明或监管变革。“闪电崩盘”是指价格在没有明显原因或新闻的情况下迅速下跌,只是在不久之后反弹。这些实验也是检验新政策措施或法规有效性的一种良好而廉价的工具。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ending Wasteful Year-End Spending: On Optimal Budget Rules in Organizations
结束浪费的年终支出:论组织中的最佳预算规则
- DOI:10.2139/ssrn.3991922
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Siemroth C
- 通讯作者:Siemroth C
Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach
算法交易、价格效率和福利:一种实验方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Corgnet B
- 通讯作者:Corgnet B
Work from Home and Productivity: Evidence from Personnel and Analytics Data on Information Technology Professionals
在家工作和生产力:来自信息技术专业人员的人员和分析数据的证据
- DOI:10.1086/721803
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gibbs M
- 通讯作者:Gibbs M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Siemroth其他文献
Minimum prices and social interactions: Evidence from the German renewable energy program
- DOI:
10.1016/j.eneco.2018.11.034 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Justus Inhoffen;Christoph Siemroth;Philipp Zahn - 通讯作者:
Philipp Zahn
A Field Experiment in Motivating Employee Ideas
激发员工创意的现场实验
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8
- 作者:
Michael J. Gibbs;Susanne Neckermann;Christoph Siemroth - 通讯作者:
Christoph Siemroth
The Informational Content of Prices When Policy Makers React to Financial Markets
政策制定者对金融市场做出反应时价格的信息内容
- DOI:
10.2139/ssrn.2462177 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Christoph Siemroth - 通讯作者:
Christoph Siemroth
How Much Information Is Incorporated into Financial Asset Prices? Experimental Evidence
金融资产价格中包含了多少信息?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lionel Page;Christoph Siemroth - 通讯作者:
Christoph Siemroth
An Experimental Analysis of Information Acquisition in Prediction Markets
预测市场信息获取的实验分析
- DOI:
10.2139/ssrn.2571710 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lionel Page;Christoph Siemroth - 通讯作者:
Christoph Siemroth
Christoph Siemroth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
- 批准号:82371825
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
- 批准号:82371317
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
- 批准号:21477024
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
动态整体面孔认知加工的认知机制的研究
- 批准号:31070908
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
磁性隧道结的势垒及电极无序效应的研究
- 批准号:10874076
- 批准年份:2008
- 资助金额:34.0 万元
- 项目类别:面上项目
抗抑郁剂调控细胞骨架蛋白的功能研究
- 批准号:30472018
- 批准年份:2004
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 27万 - 项目类别:
Studentship
Root effects on soil organic matter: a double-edged sword
根系对土壤有机质的影响:一把双刃剑
- 批准号:
DP240101159 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Fellowship
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Training Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
- 批准号:
2305961 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Fellowship Award
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
- 批准号:
2412046 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Effects of Labor Mobility on Inventory Holdings and Firm Performance: Evidence from the Inevitable Disclosure Doctrine
劳动力流动对库存持有和公司绩效的影响:不可避免披露原则的证据
- 批准号:
24K16474 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant