Exploring the Nature of Ethnic Disparities in Sentencing through Causal Inference

通过因果推理探索量刑中种族差异的本质

基本信息

  • 批准号:
    ES/W00738X/1
  • 负责人:
  • 金额:
    $ 30.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Few principles are more fundamental to a liberal society than equality under the law, and few public acts epitomise that principle more clearly than sentencing hearings. Understandably, the study of ethnic disparities in sentencing has attracted vast research efforts. Empirical studies have shown how offenders from ethnic minority groups tend to receive harsher punishments than white offenders after committing similar crimes. These disparities have been documented in great detail; being corroborated across jurisdictions, offence types, and sentence outcomes. However, one key question remains: can such disparities be taken as evidence of discrimination? Research based on real cases cannot randomise offenders by their ethnicity, hence, how do we know that those disparities are not due to unobserved relevant case characteristics? For example, we would expect to see differences in sentence severity for similar crimes committed by black and white offenders if white offenders are shown to plead guilty more often than black offenders. The analytical response to this problem has been to 'control for' any relevant case characteristics. But what if those differences are based on case characteristics - such as offender dangerousness - that cannot be easily measured, nor controlled for? And, what if those case characteristics are not neutrally defined but subject to potential discriminatory practices? These are important methodological questions that remain unresolved. Here, we suggest using the new sentencing datasets made available by Administrative Data Research UK, and some of the latest sensitivity analysis techniques developed by epidemiologists to overcome this methodological impasse. Sensitivity analysis is used to test the robustness of findings in contexts where key research assumptions are likely violated. The most famous example of this dates back to the 'smoking cause lung cancer' debate, which dragged on for decades because of the absence of experimental evidence. This was until Cornfield et al. (1959) demonstrated that the effect of any relevant unobserved factors (e.g. genes predisposing to nicotine craving while simultaneously carcinogenic) ought to be unrealistically high in order to explain the observed associations between lung cancer and smoking. We suggest following a similar approach here. Rather than uncritically dismissing ethnic disparities because of their inability to make perfect 'like with like' comparisons, we pose the following question: what should the strength of the unobserved relevant case characteristics be to explain away the ethnic disparities observed? Estimating that threshold will allow us to make a more informed judgement regarding whether the observed ethnic disparities represent evidence of discrimination. Beyond their academic merit, the questions to be explored in this project are of fundamental interest to all criminal justice agencies. Various elements of the project, including its research questions, have been co-designed in collaboration with representatives of the England and Wales Bar Association, Sentencing Council, Crown Prosecution Service, and Sentencing Academy, which feature amongst the project's external partners. As a result, our findings will be directly relevant and available to the key policy-makers in charge of monitoring and redressing ethnic disparities in our jurisdiction. Ultimately, this project will help enhance the public debate around ethnic disparities in the criminal justice system throughout the nation. Regardless of the findings obtained, undertaking an independent and unprecedentedly robust examination of ethnic disparities in sentencing will increase transparency in the criminal justice system, signalling integrity and contributing to restore public trust.
对于一个自由社会来说,没有什么原则比法律面前人人平等更基本,也没有什么公共行为比判决听证会更能体现这一原则。可以理解的是,对判决中种族差异的研究吸引了大量的研究工作。实证研究表明,少数民族群体的罪犯在犯下类似罪行后往往比白色罪犯受到更严厉的惩罚。这些差异已被详细记录,并在不同司法管辖区、犯罪类型和判决结果中得到证实。然而,一个关键问题仍然存在:这种差异是否可以被视为歧视的证据?基于真实的案件的研究不能按种族随机分配罪犯,因此,我们如何知道这些差异不是由于未观察到的相关案件特征?例如,如果白色罪犯比黑人罪犯更经常认罪,我们会期望看到黑人和白色罪犯犯下的类似罪行的判决严重程度的差异。对这一问题的分析反应是“控制”任何相关的病例特征。但是,如果这些差异是基于案件的特点-如罪犯的邪恶-不能很容易地衡量,也不能控制?而且,如果这些案件特征不是中立定义的,而是受到潜在的歧视性做法的影响,那该怎么办?这些都是尚未解决的重要方法问题。在这里,我们建议使用英国行政数据研究所提供的新的量刑数据集,以及流行病学家开发的一些最新的敏感性分析技术来克服这种方法上的僵局。敏感性分析用于测试在关键研究假设可能被违反的情况下发现的稳健性。最著名的例子可以追溯到“吸烟导致肺癌”的争论,由于缺乏实验证据,这场争论持续了几十年。直到Cornfield等人(1959)证明,任何相关的未观察到的因素(例如,诱发尼古丁渴望的基因,同时致癌)的影响应该是不切实际的高,以解释观察到的肺癌和吸烟之间的关联。我们建议在这里采取类似的做法。而不是不加批判地驳回种族差异,因为他们无法作出完美的“喜欢与喜欢”的比较,我们提出了以下问题:什么力量的未观察到的相关情况下的特点是解释了观察到的种族差异?估计这一阈值将使我们能够就观察到的族裔差异是否代表歧视的证据作出更知情的判断。除了其学术价值外,该项目所探讨的问题对所有刑事司法机构都具有根本意义。该项目的各种要素,包括其研究问题,是与英格兰和威尔士律师协会、量刑理事会、皇家检察署和量刑学院的代表合作共同设计的,这些机构是该项目的外部合作伙伴。因此,我们的调查结果将直接相关,并提供给负责监测和纠正我们管辖范围内种族差异的关键决策者。最终,该项目将有助于加强全国各地刑事司法系统中种族差异的公共辩论。无论结果如何,对判决中的族裔差异进行独立和前所未有的强有力审查,将提高刑事司法系统的透明度,表明廉正,并有助于恢复公众的信任。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Racial and ethnic disparities in sentencing: What do we know, and where should we go?
量刑中的种族和民族差异:我们知道什么,我们应该去哪里?
Ethnic Disparities in Sentencing: Warranted or Unwarranted?
量刑中的种族差异:有根据还是无根据?
  • DOI:
    10.31235/osf.io/k8bsg
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pina-Sánchez J
  • 通讯作者:
    Pina-Sánchez J
The Interrelationship between Area Deprivation and Ethnic Disparities in Sentencing Deprivation and Ethnic Disparities in Sentencing
地区剥夺与量刑中的种族差异之间的相互关系 剥夺与量刑中的种族差异之间的相互关系
  • DOI:
    10.22541/au.168897284.40421687/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pina-Sánchez J
  • 通讯作者:
    Pina-Sánchez J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Pina Sanchez其他文献

Jose Pina Sanchez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Collaborative R&D
Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005163/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Research Grant
Resilient and Equitable Nature-based Pathways in Southern African Rangelands (REPAiR)
南部非洲牧场弹性且公平的基于自然的途径 (REPAiR)
  • 批准号:
    NE/Z503459/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Research Grant
Engineering Nature-based Solutions to Tackle Antimicrobial Resistance
工程基于自然的解决方案来解决抗菌素耐药性
  • 批准号:
    EP/Y003101/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Research Grant
Long-Term Nature Reserve Human Interaction
长期自然保护区人类互动
  • 批准号:
    2345184
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Cooperative Agreement
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Collaborative R&D
Nature-based solutions for the climate change-biodiversity nexus in cities
城市气候变化与生物多样性关系的基于自然的解决方案
  • 批准号:
    DE240100699
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating the dynamic nature of listening comprehension in EMI lectures: A comparison of Japan, Hong Kong, and Sweden
调查 EMI 讲座中听力理解的动态性质:日本、香港和瑞典的比较
  • 批准号:
    23K25340
  • 财政年份:
    2024
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了