Boundary conditions of conceptual spaces

概念空间的边界条件

基本信息

  • 批准号:
    ES/X00824X/1
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The topographic structure underlying conceptual knowledge representations remains vividly debated. Two major accounts can be distinguished: spatial vs. non-spatial accounts. Attempts to adjudicate between these accounts have been unsuccessful. We hypothesize that boundary conditions during acquisition and performance determine the topographic structure at the cognitive and neural level. This proposal aims at delineating the boundary conditions that define the topography of conceptual knowledge. Two major questions will be addressed:1. What is the impact of context factors on the architecture of conceptual knowledge and its behavioral and neural expression? The transitive nature of numbers, for example, lends itself for spatially projecting numerical magnitude onto a one-dimensional manifold. For more complex (e.g. two-dimensional) concepts, the representation may take a map-like topography. For non-transitive series and other memory contents such as arithmetic facts, however, a spatial architecture appears less suited and graph-like, semantic networks have been proposed. Hence, transitivity and dimensionality of the conceptual knowledge may call for different topographies and may hence represent potential boundary factors that define the topography. Other unresolved issues that will be addressed include the question how two previously unrelated transitive series are projected onto a common metric and how two-dimensional conceptual spaces translate into manual and ocular behavior.2. What role do other potential boundary factors such as expertise and familiarity with concepts play in the construction of conceptual representations? The way in which newly acquired concepts are linked with existing knowledge influences behavior. We investigate how signature effects of the innate numerical magnitude representation (distance and size effects) emerge during the acquisition of numerical symbols in children. Hence we investigate the impact of developmental dependencies on the shape of conceptual knowledge.Using a common set of experiments, the project combines complementary behavioral measures to delineate the topographical structure (reaction times, pointing positions on a touchscreen, ocular parameters from eye tracking) and neurofunctional functional magnetic resonance imaging data from adults and elementary school children. To elucidate the role of pre-existing knowledge, the project combines a training approach in which participants will be taught new conceptual spaces with the investigation of existing concepts such as number knowledge.Delineating neural and cognitive principles underlying the acquisition and adaptation of conceptual content will advance our understanding of conceptual knowledge representation. By shifting the focus from the question whether all concepts are spatially represented toward the more fruitful question of how contextual variables shape the observed performance, this project enables a more productive debate.
概念知识表征的拓扑结构仍然存在着激烈的争论。可以区分两个主要账户:空间账户和非空间账户。试图在这些帐户之间进行裁决的努力没有成功。我们假设,在收购和性能的边界条件决定的地形结构在认知和神经水平。这个建议的目的是划定边界条件,界定地形的概念知识。将解决两个主要问题:1。语境因素对概念知识的结构及其行为和神经表达有何影响?例如,数的传递性质使其本身适合于将数值大小空间投影到一维流形上。对于更复杂(例如,二维)的概念,表示可以采用类似地图的拓扑。然而,对于非传递序列和其他记忆内容(如算术事实),空间架构似乎不太适合,并且已经提出了类似图形的语义网络。因此,概念知识的传递性和维度性可能需要不同的拓扑结构,因此可能代表定义拓扑结构的潜在边界因素。其他未解决的问题,将解决包括两个以前不相关的传递系列如何投射到一个共同的度量标准,以及如何二维概念空间转化为手动和视觉行为的问题。其他潜在的边界因素,如专业知识和对概念的熟悉程度,在概念表征的构建中扮演什么角色?新获得的概念与现有知识联系的方式影响行为。我们研究了儿童在数字符号习得过程中,先天数字量表征的特征效应(距离效应和大小效应)是如何产生的。因此,我们调查的影响,发展的依赖关系的形状的概念knowledge.Using一组共同的实验,该项目结合了互补的行为措施,描绘地形结构(反应时间,在触摸屏上的指向位置,眼睛跟踪的参数)和神经功能的功能磁共振成像数据从成人和小学生。为了阐明先前存在的知识的作用,该项目结合了一种培训方法,在这种方法中,参与者将被教导新的概念空间,并对现有的概念进行调查,如数字知识。描述获得和适应概念内容的神经和认知原则将促进我们对概念知识表征的理解。通过将焦点从是否所有概念都在空间上表示的问题转移到上下文变量如何塑造观察到的表现这一更富有成效的问题,该项目实现了更富有成效的辩论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silke Goebel其他文献

Silke Goebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silke Goebel', 18)}}的其他基金

The foundations of understanding fractions and decimal numbers
理解分数和小数的基础
  • 批准号:
    ES/W005654/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Bilateral Austria: three hundred-and-twenty-eight and 328: cross-format number integration and its relationship to mathematics performance
双边奥:三百二十八和328:跨格式数积分及其与数学成绩的关系
  • 批准号:
    ES/N014677/1
  • 财政年份:
    2017
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant

相似国自然基金

无穷维哈密顿系统的KAM理论
  • 批准号:
    10771098
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
  • 批准号:
    24K17146
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How will Emperor Penguins Respond to Changing Ice Conditions (EPIC)?
帝企鹅将如何应对不断变化的冰况(EPIC)?
  • 批准号:
    NE/Y00115X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Storming Immune Monogenic Conditions through Multiomic and Gene Editing Approaches
通过多组学和基因编辑方法攻克免疫单基因条件
  • 批准号:
    EP/Y032500/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Understanding and treating neurogenetic conditions related to the Kennedy pathway
了解和治疗与肯尼迪通路相关的神经遗传疾病
  • 批准号:
    MR/Y014251/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Projects
Care and Repair: Rethinking Contemporary Curation for Conditions of Crisis
护理与修复:重新思考危机条件下的当代策展
  • 批准号:
    DP240102206
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Projects
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fatigue Life Assessment of Structures under Realistic Loading Conditions
实际载荷条件下结构的疲劳寿命评估
  • 批准号:
    DP240103201
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Projects
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Projects
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
  • 批准号:
    10109582
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了