ADR UK Data First Evaluation Fellowship
ADR 英国数据第一评估奖学金
基本信息
- 批准号:ES/X011348/1
- 负责人:
- 金额:$ 18.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Until recently, the large amounts of administrative data routinely collected about offenders as they are moved through the Criminal Justice System have been inaccessible to research. Instead, our understanding has largely been restricted to static insights into particular points in the journey. The Ministry of Justice ADR UK linkage project has transformed this picture, allowing offenders to be tracked across all stages of the Criminal Justice System. This opens up vast potentials for cutting edge research that recognises the complex interconnections that exist between different parts of the Criminal Justice System. For example, this could help us to understand how and why some of those people that are sentenced by the courts return quickly (and repeatedly) following the completion of their sentence, whilst other offenders are never seen again. The effects of more complex criminal justice histories including multiple transitions back through the system can also be examined as well as the impacts of particular interventions on particular types of individual. But the complexity and scale of this new wave of linked data necessitates new working approaches and understanding of new analytic techniques. The fellowship is an unrivalled opportunity to work directly alongside Ministry of Justice analysts to realise the full potential of this linked data. Working collaboratively, I will identify a number of clearly defined research questions that meet Ministry of Justice priorities and can be addressed with this data. In particular, the opportunities afforded by linking information from across different Criminal Justice stages will be exploited. The specific questions will be guided by my own academic understanding of individuals journeys through the Criminal Justice System built up over more than 15 years as an empirical criminologist. They will also appropriately reflect the structural complexities inherent in the linked data sources including correctly engaging with the role of context (the effect of being dealt with in a specific court and/or prison) and the fact that prior experiences shape subsequent ones. Research questions will be refined in consultation with Ministry of Justice analysts in an interactive workshop. This will be informed by some initial 'proof of concept' data analysis exercises with the available data. Here the emphasis will be on providing a rapid evidence base for further discussion rather than on selecting the most technically sophisticated analysis solutions. These rapid data deep-dives will help to highlight specific data challenges, clarify the central research question, and facilitate further discussion and question development. The most promising questions would then be worked up into full-scale empirical projects supported by more statistically robust analytic approaches that appropriately reflect the patterns that emerge in the data. Crucial to the fellowship is ensuring a legacy for future research. To achieve this, in addition to the more standard publication of key findings in academic and policy outlets, all work will be written up within data analysis worksheets. These worksheets link directly to the raw data and will run the computational code required to complete the data analysis, whilst also including explanatory text and publishable outputs. Keeping all elements of the data processing, analysis, and reporting within the same worksheet will ensure fully replicability of the empirical work, whilst also allowing new users to quickly adapt the code and/ or text to generate new reports. I will also run workshops for Ministry of Justice analysts where relevant.
直到最近,在刑事司法系统中例行收集的关于罪犯的大量行政数据一直无法用于研究。相反,我们的理解在很大程度上局限于对旅程中特定点的静态见解。司法部的联合王国ADR联系项目改变了这一局面,使犯罪者能够在刑事司法系统的各个阶段得到跟踪。这为认识到刑事司法系统不同部分之间存在的复杂相互联系的前沿研究开辟了巨大的潜力。例如,这可以帮助我们理解为什么一些被法院判刑的人在服刑期满后很快(反复)返回,而其他罪犯则再也没有出现过。还可以审查更复杂的刑事司法历史的影响,包括通过系统的多次过渡,以及特定干预措施对特定类型个人的影响。但是,这种新的关联数据浪潮的复杂性和规模需要新的工作方法和对新分析技术的理解。该奖学金是一个无与伦比的机会,可以直接与司法部分析师一起工作,以实现这些关联数据的全部潜力。通过合作,我将确定一些明确定义的研究问题,这些问题符合司法部的优先事项,可以用这些数据来解决。特别是,将利用将不同刑事司法阶段的信息联系起来所提供的机会。具体的问题将由我自己的学术理解的个人旅程通过刑事司法系统建立了超过15年的经验犯罪学家的指导。它们还将适当反映链接数据源固有的结构复杂性,包括正确处理背景的作用(在特定法院和/或监狱处理的影响)以及先前的经历影响随后的经历。将在互动讲习班上与司法部分析人员协商,完善研究问题。这将通过一些初步的“概念证明”数据分析练习与现有数据来提供信息。这里的重点将是为进一步讨论提供一个快速的证据基础,而不是选择技术上最复杂的分析解决方案。这些快速的数据深度挖掘将有助于突出具体的数据挑战,澄清中心研究问题,并促进进一步的讨论和问题的发展。然后,最有希望的问题将被处理成全面的实证项目,并得到更可靠的统计分析方法的支持,这些方法适当地反映了数据中出现的模式。该奖学金的关键是确保为未来的研究留下遗产。为了实现这一目标,除了在学术和政策媒体上更标准地发布关键发现外,所有工作都将记录在数据分析工作表中。这些数据库直接链接到原始数据,并将运行完成数据分析所需的计算代码,同时还包括解释性文本和可扩展的输出。将数据处理、分析和报告的所有元素保持在同一工作表中,将确保经验工作的完全可复制性,同时还允许新用户快速调整代码和/或文本以生成新报告。我还将酌情为司法部分析人员举办讲习班。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Brunton-Smith其他文献
Ian Brunton-Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Brunton-Smith', 18)}}的其他基金
Re-counting crime: New methods to improve the accuracy of estimates of crime
重新统计犯罪:提高犯罪估计准确性的新方法
- 批准号:
ES/T015667/1 - 财政年份:2021
- 资助金额:
$ 18.26万 - 项目类别:
Research Grant
相似国自然基金
LncRNA-lincUK介导邻近基因UK组蛋白修
饰调控褐飞虱繁殖力的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CREKA/rhPro-UK靶向载药微泡在腔内超声场下对静脉血栓的除栓作用及机理研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
EEID:US-UK-China: 新发禽流感病毒的演进与生态传播动力学的前瞻性研究
- 批准号:
- 批准年份:2020
- 资助金额:450 万元
- 项目类别:
抗真菌药物UK-2A的组合生物合成研究
- 批准号:31970054
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
超低温(uK-mK)离子+原子+原子三体复合的全维量子力学理论研究
- 批准号:21873016
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
两种温度指标(Uk'37和TEX86) 的现代水体调查和沉积记录整合研究
- 批准号:41376046
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
新型多肽UK12抑制视网膜新生血管作用及机制研究
- 批准号:81302683
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
UK37和藻类分子标志物——研究白令海、北冰洋浮游植物群落结构变化对北极气候变暖和ENSO的响应和反馈
- 批准号:41276199
- 批准年份:2012
- 资助金额:90.0 万元
- 项目类别:面上项目
牛UK株轮状病毒拮抗Ⅰ型IFN信号转导通路机制的研究
- 批准号:31201909
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
UK37和分子化石及其单体δ13C、δD特殊形式记录——浙江沿海浮游植物对Ei Nino / La Nina 响应及其可能机理
- 批准号:40876063
- 批准年份:2008
- 资助金额:47.0 万元
- 项目类别:面上项目
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
SME Support
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
SME Support
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
Collaborative R&D
Optimising Data Integration for Sustainable Deployment of Zero Emission Vehicles in UK
优化数据集成以实现英国零排放车辆的可持续部署
- 批准号:
10114156 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
SME Support
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
Research Grant
Growing Prosperity through Financial Inclusion: “FinBridge” - Fintech Data to Bridge the Trust-Gap between Mainstream Financial Service Providers and Diaspora Communities in the UK and other Financially Underserved Minorities
通过金融包容性促进繁荣:“FinBridge” - 金融科技数据弥合主流金融服务提供商与英国侨民社区和其他金融服务不足的少数群体之间的信任差距
- 批准号:
10095550 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
Collaborative R&D
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Collaborative R&D
Infrastructure and Services - The UK Health Data Research Alliance and Hub Network
基础设施和服务 - 英国健康数据研究联盟和中心网络
- 批准号:
HDR-23001 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Intramural
Administrative Data Research UK - Data Access and Engagement Programme
英国行政数据研究 - 数据访问和参与计划
- 批准号:
ES/XX00070/1 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Research Grant
Creating an EPR Data Sandbox to drive circularity in UK fashion
创建 EPR 数据沙箱以推动英国时尚的循环发展
- 批准号:
10062267 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Collaborative R&D