Measuring inequality-driven skills gaps in the UK labour market
衡量英国劳动力市场中不平等驱动的技能差距
基本信息
- 批准号:ES/Z502443/1
- 负责人:
- 金额:$ 17.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To unlock the full potential of the UK economy, structural inequalities within the UK labour market must be addressed. To do this, we must understand how structural inequalities shape the skills that workers within the labour market possess. When hiring processes are impacted by discrimination, where employers factor in characteristics such as gender and ethnicity when choosing between applicants, structural inequalities will be present in the labour market. This discrimination will have long-term effects, as the individuals discriminated against are not only denied an opportunity to advance their earnings, but also an opportunity to develop new skills. This lack of skills development will impact the types of jobs they obtain in the future, and will have a cumulative impact over the course of their careers. While there is a large amount of research regarding how structural inequalities impact earnings (e.g. gender wage gaps), the way they influence worker skills is not well understood. This creates difficulties for policymakers, as programmes promoting worker skills development may be ineffective or have unintended consequences if they do not account for how these inequalities shape skills development. This project will provide insights into how hiring discrimination influences the skills that UK workers possess. Secondarily, it will consider how the impact of hiring discrimination on the skillsets of workers effects outcomes for individuals (e.g. in terms of earnings) and for the industries in which they work (e.g. in terms of lost productivity). These insights will result from simulation experiments performed using a model describing how individuals move between jobs within the UK labour market. By simulating scenarios where hiring discrimination effects are present, and comparing outputs (e.g. worker skillsets, worker earnings) to those produced when hiring discrimination effects are absent, the impact of these effects will be measured. The work has three main objectives: 1) the construction from UK employment data of a labour flow network (LFN) that describes how individuals move between jobs in the UK labour market, 2) the development of a model that simulates the movement of workers between jobs and accurately reproduces the LFN generated in 1), and 3) the use of this model to simulate scenarios where hiring discrimination effects are present/absent, to determine how these effects influence worker skillsets and outcomes like worker earnings and industry productivity. The UK LFN will be constructed using data from the linkage between the Annual Survey of Households and Earnings and the 2011 Census. This project will be the first to quantify the impact of hiring biases on the skillset of workers at a large scale. This has not previously been possible, due to the limitations of conventional methods for assessing the impacts of hiring biases, as well as data availability issues. The results of this research will guide discussions on how to address the impacts of hiring biases on workers and on the economy as a whole. Insights gained from this project will shape the construction of policy interventions aimed at developing worker skills, in service of improving outcomes for workers and the economy. The model developed will also provide a tool for governments and the third sector. Delivering policymakers these insights and tools, so they can institute data-driven policy, is especially important in current times, when governments are facing strong pressures to transform labour markets (e.g. to promote "green" jobs).
为了充分释放英国经济的潜力,必须解决英国劳动力市场内部的结构性不平等问题。要做到这一点,我们必须了解结构性不平等如何塑造劳动力市场工人所拥有的技能。当招聘过程受到歧视的影响时,雇主在选择应聘者时会考虑性别和族裔等特点,劳动力市场将出现结构性不平等。这种歧视将产生长期影响,因为受歧视的个人不仅被剥夺了提高收入的机会,而且还被剥夺了发展新技能的机会。缺乏技能发展将影响他们未来获得的工作类型,并将在他们的职业生涯中产生累积影响。虽然有大量关于结构性不平等如何影响收入(例如性别工资差距)的研究,但人们对它们影响工人技能的方式还没有很好的了解。这给政策制定者带来了困难,因为如果不考虑这些不平等如何影响技能发展,促进工人技能发展的方案可能无效或产生意想不到的后果。这个项目将提供关于雇佣歧视如何影响英国工人所拥有的技能的见解。其次,它将考虑雇用歧视对工人技能的影响如何对个人(例如,在收入方面)和他们工作的行业(例如,在生产力损失方面)产生影响。这些洞察力将来自于使用一个模型进行的模拟实验,该模型描述了英国劳动力市场中个人如何在不同的工作之间流动。通过模拟存在雇佣歧视影响的情景,并将产出(例如工人技能、工人收入)与没有雇佣歧视影响时产生的产出进行比较,将衡量这些影响的影响。这项工作有三个主要目标:1)根据英国就业数据构建劳动力流动网络(LFN),描述个人如何在英国劳动力市场的不同工作之间流动;2)开发一个模型,模拟工人在不同工作之间的流动,并准确地再现1)中产生的LFN;以及3)使用该模型模拟存在/不存在雇佣歧视影响的场景,以确定这些影响如何影响工人的技能和结果,如工人收入和行业生产率。英国LFN将使用家庭和收入年度调查与2011年人口普查之间的联系数据来构建。这个项目将是第一个大规模量化招聘偏见对工人技能影响的项目。这在以前是不可能的,因为评估招聘偏见影响的传统方法的局限性,以及数据可用性问题。这项研究的结果将指导关于如何解决招聘偏见对工人和整个经济的影响的讨论。从这个项目中获得的见解将塑造旨在发展工人技能的政策干预措施的构建,以服务于改善工人和经济的结果。开发的模式还将为政府和第三部门提供工具。向政策制定者提供这些见解和工具,以便他们能够制定以数据为导向的政策,在当前时代尤为重要,因为各国政府正面临改革劳动力市场的强大压力(例如促进“绿色”就业)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathyrn Fair其他文献
Kathyrn Fair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
- 批准号:51908258
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding and Reducing Inequality in the Returns to K-12 STEM for College and Early Career Outcomes
职业:了解并减少 K-12 STEM 大学和早期职业成果回报的不平等
- 批准号:
2338923 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Continuing Grant
(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
- 批准号:
MR/X033333/1 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Fellowship
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Inequality, infections and chronic disease in England: the interaction of risk factors and the dynamics of transmission
英国的不平等、感染和慢性病:危险因素和传播动态的相互作用
- 批准号:
MR/X033260/1 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Fellowship
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
- 批准号:
23K25777 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
- 批准号:
24K04909 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the intersection between climate change, inequality and health
探索气候变化、不平等和健康之间的交叉点
- 批准号:
2908633 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Studentship
Egalitarian Equivalent Treatment Effects: The Econometrics of Inequality-Sensitive Treatment Effects Estimation
平等主义等效治疗效果:不平等敏感治疗效果估计的计量经济学
- 批准号:
2313969 - 财政年份:2023
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
The Impact of Robotization on Occupational Wage Inequality
机器人化对职业工资不平等的影响
- 批准号:
23K12498 - 财政年份:2023
- 资助金额:
$ 17.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empowering children to shape the future of research on social inequality and health
赋权儿童塑造社会不平等和健康研究的未来
- 批准号:
AH/X01231X/1 - 财政年份:2023
- 资助金额:
$ 17.22万 - 项目类别:
Research Grant














{{item.name}}会员




