Structure and mechanism of bile acid transporters
胆汁酸转运蛋白的结构和机制
基本信息
- 批准号:G0900990/1
- 负责人:
- 金额:$ 54.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bile acids are important detergent like substances produced in our body for emulsifying fat in our gut. They are made in the liver and are stored in the gall-bladder until they are needed to help break down the food we consume. The body has its own re-cycling system, which means that the bile acid is re-used. This re-cycling process requires that the bile acids are taken back up into the blood stream by the aid of some nifty protein machines. These protein machines, so-called transporters, recognize and are specific to the shape of bile acid. What is interesting is that if we can understand this process in greater detail, we may be able to stop this transporter from working. The result of doing this would mean that the bile acid usually kept in our body would be eliminated instead. Although this sounds wasteful, it could be very beneficial, as removing bile acid is one of the best ways of lowering cholesterol levels in the body. How do we do this? The best way is first determine what the transporter looks likes at the molecular detail. Just as a key is designed to fit a certain key-hole, so bile acid is made to fit its own transporter. So how do we decipher the three-dimensional shape of these proteins? To achieve this, we need to use X-ray protein crystallography. Unfortunately, X-ray crystallography requires the production of crystals from high concentrations of purified proteins. The production of protein crystals of this type is very difficult, and the scientific community has struggled over many years. These molecules are present in an oil-like environment and we need to use specific chemicals, detergents, to isolate them. In fact, we only know the shape of 3 of the 2,000 or so transporters in our body. However, our laboratory has developed new tools, which has made it possible to tackle some of these main hurdles. We can now isolate the bile acid transporters for the first time. Furthermore, we have managed to produce small crystals and so are well on the road to obtaining their 3D-shape. As bacteria, like us, also use a machine to transport bile acid we will also study this protein. In general bacterial proteins are rather easier to work with than their mammalian equivalents. This study will be useful, not only for drug design but also to understand the mechanisms of transporters in general.
胆汁酸是我们体内产生的一种重要的洗涤剂类物质,用于乳化我们肠道中的脂肪。它们是在肝脏中制造的,并储存在胆汁中,直到需要它们来帮助分解我们所摄入的食物。人体有自己的再循环系统,这意味着胆汁酸被重新利用。这个再循环过程需要在一些精巧的蛋白质机器的帮助下将胆汁酸带回血液中。这些蛋白质机器,即所谓的转运体,识别胆汁酸的形状,并针对胆汁酸的形状。有趣的是,如果我们能更详细地了解这一过程,我们或许能够阻止这个传送器工作。这样做的结果将意味着通常保存在我们体内的胆汁酸将被消除。尽管这听起来很浪费,但它可能是非常有益的,因为去除胆汁酸是降低体内胆固醇水平的最佳方法之一。我们该怎么做呢?最好的方法是首先确定转运蛋白在分子细节上的样子。正如钥匙被设计成适合特定的钥匙孔一样,胆汁酸的制造也是为了适应它自己的运输器。那么,我们如何破译这些蛋白质的三维形状呢?要做到这一点,我们需要使用X射线蛋白质结晶学。不幸的是,X射线结晶学需要从高浓度的纯化蛋白质中产生晶体。生产这种类型的蛋白质晶体是非常困难的,科学界已经奋斗了很多年。这些分子存在于类似石油的环境中,我们需要使用特定的化学物质,洗涤剂来分离它们。事实上,我们只知道我们体内大约2000个转运体中的3个的形状。然而,我们的实验室已经开发出新的工具,这使得解决这些主要障碍成为可能。我们现在可以第一次分离胆汁酸转运蛋白。此外,我们已经成功地生产了小晶体,因此在获得其3D形状的道路上进展顺利。由于细菌和我们一样,也使用机器来运输胆汁酸,我们也将研究这种蛋白质。一般说来,细菌蛋白质比它们的哺乳动物蛋白质更容易处理。这项研究不仅对药物设计有帮助,而且对了解转运蛋白的一般机制也有帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Cameron其他文献
Alexander Cameron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Cameron', 18)}}的其他基金
In-depth structural characterization of the tetraspanin CD81
四跨膜蛋白 CD81 的深入结构表征
- 批准号:
BB/N008677/1 - 财政年份:2016
- 资助金额:
$ 54.09万 - 项目类别:
Research Grant
Elucidating molecular level details of the plant Borate transporter structure and function
阐明植物硼酸盐转运蛋白结构和功能的分子水平细节
- 批准号:
BB/N017765/1 - 财政年份:2016
- 资助金额:
$ 54.09万 - 项目类别:
Research Grant
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
- 批准号:82371799
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Mechanism-based combination therapy for cholangiocarcinoma
基于机制的胆管癌联合治疗
- 批准号:
10650049 - 财政年份:2023
- 资助金额:
$ 54.09万 - 项目类别:
Mechanism for hepatitis E virus exit from polarized hepatocytes
戊型肝炎病毒从极化肝细胞中退出的机制
- 批准号:
10578386 - 财政年份:2023
- 资助金额:
$ 54.09万 - 项目类别:
Mechanism of sarcopenia development mediated by skeletal muscle bile acid receptors using a mouse model with human-like bile acid composition
使用具有类人胆汁酸成分的小鼠模型研究骨骼肌胆汁酸受体介导的肌肉减少症发展机制
- 批准号:
23H03315 - 财政年份:2023
- 资助金额:
$ 54.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of a novel mechanism of NASH focusing on bile acid transporters
阐明 NASH 的新机制,重点关注胆汁酸转运蛋白
- 批准号:
22K08004 - 财政年份:2022
- 资助金额:
$ 54.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Gut Microbiome in Lean and Obese Youth with Type 1 Diabetes and Novel Mechanism of Action of Metformin
患有 1 型糖尿病的瘦和肥胖青年的肠道微生物组和二甲双胍的新作用机制
- 批准号:
10674064 - 财政年份:2022
- 资助金额:
$ 54.09万 - 项目类别:
The Gut Microbiome in Lean and Obese Youth with Type 1 Diabetes and Novel Mechanism of Action of Metformin
患有 1 型糖尿病的瘦和肥胖青年的肠道微生物组和二甲双胍的新作用机制
- 批准号:
10525313 - 财政年份:2022
- 资助金额:
$ 54.09万 - 项目类别:
Dynamic BH3 Profiling with Patient Derived Organoids of Esophageal Cancer and Mesothelioma Enable Precision-Based Targeting of the Mitochondrial Apoptotic Pathway
使用患者来源的食管癌和间皮瘤类器官进行动态 BH3 分析,实现线粒体凋亡途径的精确靶向
- 批准号:
10459596 - 财政年份:2021
- 资助金额:
$ 54.09万 - 项目类别:
Dynamic BH3 Profiling with Patient Derived Organoids of Esophageal Cancer and Mesothelioma Enable Precision-Based Targeting of the Mitochondrial Apoptotic Pathway
使用患者来源的食管癌和间皮瘤类器官进行动态 BH3 分析,实现线粒体凋亡途径的精确靶向
- 批准号:
10285093 - 财政年份:2021
- 资助金额:
$ 54.09万 - 项目类别:
Elucidation of bile duct development and its disorder mechanism using biliary atresia-specific iPS cells
利用胆道闭锁特异性 iPS 细胞阐明胆管发育及其紊乱机制
- 批准号:
20K08977 - 财政年份:2020
- 资助金额:
$ 54.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of a novel mechanism of NASH pathogenesis focused on bile acid transporters
研究以胆汁酸转运蛋白为中心的 NASH 发病机制
- 批准号:
20K17014 - 财政年份:2020
- 资助金额:
$ 54.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists