Novel statistical approaches for the characterization of genomic structural rearrangements in cancers from high-throughput genome sequencing data

利用高通量基因组测序数据表征癌症基因组结构重排的新统计方法

基本信息

  • 批准号:
    MR/L001411/1
  • 负责人:
  • 金额:
    $ 43.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Structural alterations are an important class of genetic mutations that arise due to the loss, gain or rearrangement of DNA segments. In cancer, these structural alterations can alter or disrupt the normal function of important genes and the biological systems in which they participate that may contribute to disease initiation, progression and later confer resistance to therapy and contribute to the spread of the disease to other systems. These structural alterations can be detected using high-throughput genome sequencing on a genome-wide scale at the theoretical resolution of a single DNA nucleotide. Various international collaborative efforts have enabled extensive catalogues of structural alterations to be built for various cancers and so that the effect of these structural variations can now investigated alongside other genetic abnormalities in studies of disease etiology, prognosis and therapeutic effectiveness. Yet, it is interesting to note though that despite the fact that we have analysed many cancers, the structural analysis of new cancer specimens is conducted no differently from the very first cancer that was studied. Existing knowledge is not utilised in spite of the fact that many structural variants are recurrent in cancer. The aim of this project is to construct libraries of cancer-related structural alterations based upon existing data resources and to develop advanced statistical algorithms that utilise these libraries to identify and classify structural variants from genome sequencing data of new patients. These algorithms will allow us to identify recurring patterns of structural abnormalities that are shared by patients and whether these relate to particular genetic and clinical features as well as track disease progression where multiple specimens are obtained from the same patient. These algorithms may enable patients to be identified who maybe suitable for novel targeted therapies or treatment regimes.
结构改变是由于DNA片段的丢失、获得或重排而引起的一类重要的基因突变。在癌症中,这些结构变化可以改变或扰乱重要基因及其参与的生物系统的正常功能,这可能有助于疾病的启动、进展和后来对治疗的抵抗,并有助于疾病向其他系统传播。这些结构的改变可以使用高通量基因组测序在全基因组范围内以单个DNA核苷酸的理论分辨率进行检测。各种国际合作努力使得能够为各种癌症建立广泛的结构变化目录,以便现在可以在疾病病因、预后和治疗效果的研究中与其他基因异常一起研究这些结构变化的影响。然而,有趣的是,尽管我们分析了许多癌症,但对新癌症样本的结构分析与最初研究的癌症没有什么不同。尽管许多结构变异在癌症中反复出现,但现有的知识并未得到利用。该项目的目的是在现有数据资源的基础上构建与癌症相关的结构变化的库,并开发先进的统计算法,利用这些库从新患者的基因组测序数据中识别和分类结构变异。这些算法将使我们能够识别患者共有的结构异常的反复模式,以及这些模式是否与特定的遗传和临床特征有关,以及在从同一患者获得多个样本的情况下跟踪疾病进展。这些算法可能使患者能够被识别出可能适合新的靶向治疗或治疗方案的患者。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A descriptive marker gene approach to single-cell pseudotime inference.
  • DOI:
    10.1093/bioinformatics/bty498
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Campbell KR;Yau C
  • 通讯作者:
    Yau C
Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference
不确定性下的顺序:使用伪时间推理的概率模型进行稳健的差异表达分析
  • DOI:
    10.1101/047365
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Campbell K
  • 通讯作者:
    Campbell K
Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference.
  • DOI:
    10.1371/journal.pcbi.1005212
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Campbell KR;Yau C
  • 通讯作者:
    Yau C
Probabilistic inference of bifurcations in single-cell data using a hierarchical mixture of factor analysers
使用层次混合因子分析器对单细胞数据中的分岔进行概率推断
  • DOI:
    10.1101/076547
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Campbell K
  • 通讯作者:
    Campbell K
switchde: inference of switch-like differential expression along single-cell trajectories.
  • DOI:
    10.1093/bioinformatics/btw798
  • 发表时间:
    2017-04-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Campbell KR;Yau C
  • 通讯作者:
    Yau C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Yau其他文献

TransfoRNA: Navigating the Uncertainties of Small RNA Annotation with an Adaptive Machine Learning Strategy
TransfoRNA:利用自适应机器学习策略应对小 RNA 注释的不确定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasser Taha;Julia Jehn;Mustafa Kahraman;Maurice Frank;M. Heuvelman;R. Horos;Christopher Yau;Bruno Steinkraus;T. Sikosek
  • 通讯作者:
    T. Sikosek
Correction: Completing a genomic characterisation of microscopic tumour samples with copy number
  • DOI:
    10.1186/s12859-024-05642-8
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Joel Nulsen;Nosheen Hussain;Aws Al-Deka;Jason Yap;Khalil Uddin;Christopher Yau;Ahmed Ashour Ahmed
  • 通讯作者:
    Ahmed Ashour Ahmed
3143 - Integrated Single Cell Analysis Reveals Cell Cycle and Ontogeny Related Transcriptional Heterogeneity in Hscs
  • DOI:
    10.1016/j.exphem.2018.06.125
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Povinelli;Quin Wills;Nikolaos Barkas;Christopher Booth;Kieran Campbell;Alba Rodriguez-Meira;Sten Eirik Jacobsen;Christopher Yau;Adam Mead
  • 通讯作者:
    Adam Mead
Association between pregnancy-related complications and development of type 2 diabetes and hypertension in women: an umbrella review
  • DOI:
    10.1186/s12916-024-03284-4
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Steven Wambua;Megha Singh;Kelvin Okoth;Kym I. E. Snell;Richard D. Riley;Christopher Yau;Shakila Thangaratinam;Krishnarajah Nirantharakumar;Francesca L. Crowe
  • 通讯作者:
    Francesca L. Crowe
mmVAE: multimorbidity clustering using Relaxed Bernoulli β-Variational Autoencoders
mmVAE:使用松弛伯努利 β-变分自编码器进行多病态聚类
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles W. L. Gadd;K. Nirantharakumar;Christopher Yau
  • 通讯作者:
    Christopher Yau

Christopher Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Yau', 18)}}的其他基金

From single cells to populations: generalized pseudotime analysis to identify patient trajectories from cross-sectional data in cancer genomics
从单细胞到群体:广义伪时间分析从癌症基因组学的横截面数据中识别患者轨迹
  • 批准号:
    MR/P02646X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 43.99万
  • 项目类别:
    Research Grant
From single cells to populations: generalized pseudotime analysis to identify patient trajectories from cross-sectional data in cancer genomics
从单细胞到群体:广义伪时间分析从癌症基因组学的横截面数据中识别患者轨迹
  • 批准号:
    MR/P02646X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 43.99万
  • 项目类别:
    Research Grant
Developing novel statistical methodology incorporating biological structure for high-throughput genomic data analysis
开发结合生物结构的新型统计方法以进行高通量基因组数据分析
  • 批准号:
    G0701810/2
  • 财政年份:
    2012
  • 资助金额:
    $ 43.99万
  • 项目类别:
    Fellowship
Developing novel statistical methodology incorporating biological structure for high-throughput genomic data analysis
开发结合生物结构的新型统计方法以进行高通量基因组数据分析
  • 批准号:
    G0701810/1
  • 财政年份:
    2009
  • 资助金额:
    $ 43.99万
  • 项目类别:
    Fellowship

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
  • 批准号:
    10651683
  • 财政年份:
    2022
  • 资助金额:
    $ 43.99万
  • 项目类别:
Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
  • 批准号:
    10446946
  • 财政年份:
    2022
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel computational approaches to characterize the effects of rare functional outlier variants on cis- and trans-regulatory disease processes
新的计算方法来表征罕见功能异常变异对顺式和反式调节疾病过程的影响
  • 批准号:
    10433216
  • 财政年份:
    2022
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel computational approaches to characterize the effects of rare functional outlier variants on cis- and trans-regulatory disease processes
新的计算方法来表征罕见功能异常变异对顺式和反式调节疾病过程的影响
  • 批准号:
    10679055
  • 财政年份:
    2022
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
  • 批准号:
    10400104
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
Developing Novel Intervention Approaches to Mitigate Cardiovascular Risk among Young African-American Women
开发新的干预方法来降低年轻非洲裔美国女性的心血管风险
  • 批准号:
    10434831
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
Developing Novel Intervention Approaches to Mitigate Cardiovascular Risk among Young African-American Women
开发新的干预方法来降低年轻非洲裔美国女性的心血管风险
  • 批准号:
    10215733
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
  • 批准号:
    10189007
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel approaches to identify and quantify the impact of drug-drug interactions in older adults with diabetes, with a focus on multimorbidity and polypharmacy
识别和量化老年糖尿病患者药物相互作用影响的新方法,重点关注多发病和多药治疗
  • 批准号:
    10599953
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
Novel statistical approaches for basket trials in ageing-related diseases
衰老相关疾病篮子试验的新统计方法
  • 批准号:
    2518263
  • 财政年份:
    2021
  • 资助金额:
    $ 43.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了