From single cells to populations: generalized pseudotime analysis to identify patient trajectories from cross-sectional data in cancer genomics
从单细胞到群体:广义伪时间分析从癌症基因组学的横截面数据中识别患者轨迹
基本信息
- 批准号:MR/P02646X/1
- 负责人:
- 金额:$ 41.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cancer continually evolves at the genetic level through the acquisition of mutations that subsequently lead to the reprogramming of normal cellular activity and ultimately abnormal function. The evolution of cancer in each patient is unique, even when they are of the same type, although they will share some core similarities. In order to understand how cancers evolve over time, it would be ideal to conduct studies where individual patients are followed over time and samples of tumours continually obtained to understand the molecular changes that are ongoing. In practice, this is both logistically impossible and unethical as multiple invasive surgeries to obtain biopsies would be both costly and distressing to patients and treatment cannot be withheld to enable prospective monitoring of the disease. The most practical clinical studies involve obtaining a single tumour biopsy from a patient (or multiple biopsies collected during the same surgery) for a large number of patients. This cross-sectional profile across a random patient population would not give us direct information about how the disease of individual patients evolve but we could combine all the information across the patients to identify sub-groups of individuals who appear to have similar disease trajectories. That is, suppose we have two patients, one at an advanced stage of disease with many mutations and another who presents at a relatively earlier disease stage, and both share a similar set of core mutations. The molecular status of the advanced patient could be an indicator of the future molecular profile of the early stage patient, if left untreated. This project proposes to develop novel statistical machine learning algorithms to apply such logic and rationale to integrate molecular profiles obtained from whole genome sequencing analysis of patients in a cross-sectional study to identify and learn temporal information that is not directly observed but may leave tell-tale clues behind.We will apply these algorithms to the national Genomics England 100,000 Genomes Projects which seeks to sequence tens of thousands of cancer genomes across a range of cancer type over the next few years. The project will give insight into how cancers evolves and importantly provide a means of developing prognostic indicators that are based on molecular information to tell us the severity of a patient's disease and their likely trajectories.
癌症通过获得突变在遗传水平上不断进化,随后导致正常细胞活性的重新编程和最终的异常功能。每个患者的癌症演变都是独特的,即使他们是同一类型,尽管他们会分享一些核心相似之处。为了了解癌症如何随着时间的推移而演变,理想的做法是进行研究,其中随着时间的推移对个体患者进行随访,并不断获得肿瘤样本,以了解正在进行的分子变化。在实践中,这在逻辑上是不可能的,也是不道德的,因为进行多次侵入性手术以获得活检对患者来说既昂贵又痛苦,并且不能为了能够对疾病进行前瞻性监测而拒绝治疗。最实用的临床研究涉及从大量患者中获得单个肿瘤活检(或在同一手术期间收集的多个活检)。这种随机患者人群的横截面特征不会给我们关于个体患者的疾病如何演变的直接信息,但我们可以将患者的所有信息联合收割机结合起来,以识别似乎具有相似疾病轨迹的个体亚组。也就是说,假设我们有两个病人,一个处于疾病的晚期,有许多突变,另一个处于相对较早的疾病阶段,两个人都有一组相似的核心突变。如果不治疗,晚期患者的分子状态可能是早期患者未来分子谱的指标。该项目提议开发新型统计机器学习算法,应用这种逻辑和原理,将从患者全基因组测序分析中获得的分子谱整合到横断面研究中,以识别和学习未直接观察到但可能留下的时间信息背后的线索。我们将把这些算法应用于国家基因组学英格兰100强,000个基因组项目,旨在未来几年内对一系列癌症类型的数万个癌症基因组进行测序。该项目将深入了解癌症如何演变,重要的是提供了一种开发基于分子信息的预后指标的方法,以告诉我们患者疾病的严重程度及其可能的轨迹。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation.
- DOI:10.1186/s13059-021-02561-2
- 发表时间:2021-12-13
- 期刊:
- 影响因子:12.3
- 作者:Hu Z;Ahmed AA;Yau C
- 通讯作者:Yau C
A descriptive marker gene approach to single-cell pseudotime inference.
- DOI:10.1093/bioinformatics/bty498
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0
- 作者:Campbell KR;Yau C
- 通讯作者:Yau C
BasisVAE: Translation-invariant feature-level clustering with Variational Autoencoders
- DOI:
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Kaspar Märtens;C. Yau
- 通讯作者:Kaspar Märtens;C. Yau
Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data.
- DOI:10.1038/s41467-018-04696-6
- 发表时间:2018-06-22
- 期刊:
- 影响因子:16.6
- 作者:Campbell KR;Yau C
- 通讯作者:Yau C
Uncovering genomic trajectories with heterogeneous genetic and environmental backgrounds across single-cells and populations
揭示单细胞和群体中具有异质遗传和环境背景的基因组轨迹
- DOI:10.1101/159913
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Campbell K
- 通讯作者:Campbell K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Yau其他文献
TransfoRNA: Navigating the Uncertainties of Small RNA Annotation with an Adaptive Machine Learning Strategy
TransfoRNA:利用自适应机器学习策略应对小 RNA 注释的不确定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yasser Taha;Julia Jehn;Mustafa Kahraman;Maurice Frank;M. Heuvelman;R. Horos;Christopher Yau;Bruno Steinkraus;T. Sikosek - 通讯作者:
T. Sikosek
Correction: Completing a genomic characterisation of microscopic tumour samples with copy number
- DOI:
10.1186/s12859-024-05642-8 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:3.300
- 作者:
Joel Nulsen;Nosheen Hussain;Aws Al-Deka;Jason Yap;Khalil Uddin;Christopher Yau;Ahmed Ashour Ahmed - 通讯作者:
Ahmed Ashour Ahmed
3143 - Integrated Single Cell Analysis Reveals Cell Cycle and Ontogeny Related Transcriptional Heterogeneity in Hscs
- DOI:
10.1016/j.exphem.2018.06.125 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Benjamin Povinelli;Quin Wills;Nikolaos Barkas;Christopher Booth;Kieran Campbell;Alba Rodriguez-Meira;Sten Eirik Jacobsen;Christopher Yau;Adam Mead - 通讯作者:
Adam Mead
Association between pregnancy-related complications and development of type 2 diabetes and hypertension in women: an umbrella review
- DOI:
10.1186/s12916-024-03284-4 - 发表时间:
2024-02-14 - 期刊:
- 影响因子:8.300
- 作者:
Steven Wambua;Megha Singh;Kelvin Okoth;Kym I. E. Snell;Richard D. Riley;Christopher Yau;Shakila Thangaratinam;Krishnarajah Nirantharakumar;Francesca L. Crowe - 通讯作者:
Francesca L. Crowe
mmVAE: multimorbidity clustering using Relaxed Bernoulli β-Variational Autoencoders
mmVAE:使用松弛伯努利 β-变分自编码器进行多病态聚类
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Charles W. L. Gadd;K. Nirantharakumar;Christopher Yau - 通讯作者:
Christopher Yau
Christopher Yau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Yau', 18)}}的其他基金
From single cells to populations: generalized pseudotime analysis to identify patient trajectories from cross-sectional data in cancer genomics
从单细胞到群体:广义伪时间分析从癌症基因组学的横截面数据中识别患者轨迹
- 批准号:
MR/P02646X/2 - 财政年份:2020
- 资助金额:
$ 41.49万 - 项目类别:
Research Grant
Novel statistical approaches for the characterization of genomic structural rearrangements in cancers from high-throughput genome sequencing data
利用高通量基因组测序数据表征癌症基因组结构重排的新统计方法
- 批准号:
MR/L001411/1 - 财政年份:2014
- 资助金额:
$ 41.49万 - 项目类别:
Research Grant
Developing novel statistical methodology incorporating biological structure for high-throughput genomic data analysis
开发结合生物结构的新型统计方法以进行高通量基因组数据分析
- 批准号:
G0701810/2 - 财政年份:2012
- 资助金额:
$ 41.49万 - 项目类别:
Fellowship
Developing novel statistical methodology incorporating biological structure for high-throughput genomic data analysis
开发结合生物结构的新型统计方法以进行高通量基因组数据分析
- 批准号:
G0701810/1 - 财政年份:2009
- 资助金额:
$ 41.49万 - 项目类别:
Fellowship
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
- 批准号:82371379
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
- 批准号:82370751
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
视网膜色素上皮细胞中YAP/mtDNA/cGAS-炎症小体轴在干性年龄相关性黄斑变性中的作用
- 批准号:82371073
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TRIM25-PHGDH信号轴调控脓毒症肺上皮细胞铁死亡的机制研究
- 批准号:82372151
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
CD8+T细胞亚群在抗MDA5抗体阳性皮肌炎中的致病机制研究
- 批准号:82371805
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
The role of GPR84 signaling during skin repair
GPR84 信号在皮肤修复中的作用
- 批准号:
10637039 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Genomic and environmental drivers of HCC in Non-Hispanic Blacks: Nature and nurture
非西班牙裔黑人 HCC 的基因组和环境驱动因素:先天和后天
- 批准号:
10856546 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Molecular mechanisms regulating LMO2+ metastasis initiating cells
调节LMO2转移起始细胞的分子机制
- 批准号:
10659840 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Mechanisms of New-Onset Autoimmunity/Longitudinal Immune Systems Analysis (MONA-LISA)
新发自身免疫/纵向免疫系统分析(MONA-LISA)的机制
- 批准号:
10655219 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Alcohol Regulation of Endothelial Plasticity in Atherosclerosis
酒精对动脉粥样硬化内皮可塑性的调节
- 批准号:
10585070 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Ethnically Diverse iPSC-Cardiomyocyte Panel for Pharmacogenomics and Drug Safety Testing
用于药物基因组学和药物安全性测试的种族多样化 iPSC-心肌细胞小组
- 批准号:
10755624 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Airway Basal Progenitor Dysfunction in the Detection, Progression and Pathogenesis of Early COPD
气道基础祖细胞功能障碍在早期 COPD 的检测、进展和发病机制中的作用
- 批准号:
10737267 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Circuit Specializations of Cerebellar Molecular Layer Interneurons
小脑分子层中间神经元的电路特化
- 批准号:
10722374 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Airway Prevotella enhance innate immune-mediated protection against lung infection
气道普雷沃氏菌增强先天免疫介导的肺部感染保护
- 批准号:
10561450 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
next-generation sequencing approaches to identify genotype-phenotype relationships during miRNA tuning of neural crest osteogenesis
新一代测序方法可识别神经嵴成骨过程中 miRNA 调节过程中的基因型与表型关系
- 批准号:
10579800 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别: