Cytochrome c oxidase: structure, function and malfunction

细胞色素 C 氧化酶:结构、功能和故障

基本信息

  • 批准号:
    MR/M00936X/1
  • 负责人:
  • 金额:
    $ 131.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

To live we need a permanent supply of energy. This is provided to our cells by a cascade of reactions that breaks down the food we eat into a universal fuel: the ATP. This process mainly occurs in organelles called mitochondria and is known as cellular respiration. The main machinery that mitochondria use to produce ATP is the respiratory chain. It is composed of four complexes, embedded in the mitochondrial inner membrane, that work together to build up an electrochemical gradient called the proton motive force and which drives ATP synthesis. Most of this gradient is in the form of protons which are pumped across the inner mitochondrial membrane by the respiratory chain complexes.An increasing number of human pathologies are associated with defects in components of the respiratory chain. In many instances, this is because the malfunction has a direct impact on their primary role in energy production via the proton gradient that they form, or because it leads to an increased production of damaging free radicals. Cytochrome c oxidase (CcO) is the terminal enzyme of our respiratory chain. It transforms the oxygen we breathe into water and greatly contributes to the generation of the proton gradient. Alterations (or mutations) in its structure have been linked with diverse pathologies such as myopathy, therapy-resistant epilepsy, neurological diseases and prostate cancer.Although the overall chemistry of mitochondrial CcO is fairly well understood, it has proven much more difficult to determine how this produces the essential proton gradient. Various hypotheses were formulated based on the available structures of the enzyme (of which only one is of mitochondrial origin, in this case bovine), but were challenged by mutagenesis work performed on smaller bacterial homologues. Today it appears that the major drawback in understanding the mechanism of mitochondrial CcO, and the effects of human disease-related mutations in particular, is the lack of a system to generate large amounts of purified protein containing defined point mutations.Remarkably, the CcO that is present in Baker's yeast mitochondria is almost identical to that in human mitochondria. The nuclear and mitochondrial DNAs which encode CcO are both amenable to mutagenesis so alterations can be made in any part of the CcO structure to investigate its function. We have thus engineered a yeast system to allow large-scale production of mutants and will use it to address fundamental questions relative to human mitochondrial CcOs.At first, we will identify the route taken by the protons to cross the protein structure by measuring CcO's ability to pump protons after alterations have been made in chosen area. We will then use advanced techniques like infrared spectroscopy to look at the concerted movement of atoms within CcO's structure and bring experimental evidences of the mechanism following which protons are being pumped. This should tell us more about the principles that govern and control the complex activity and will be our starting point to investigate how factors or signals external to the reaction centre can, in vivo, regulate CcO's activity. This will be of particular interest to understand how the human CcO has adapted to different energy requirements depending on tissue type. We will aim to obtain a detailed 3D structure of the yeast CcO to confirm our hypotheses. As we unravel the details of CcO's action, we will introduce identified human disease-related mutations in our yeast system in order to investigate the nature of their malfunction. Finally, we will aim at progressively incorporating the human genes or parts of the human enzyme in our yeast system. This will create as even better model for the study of human diseases and the development and testing of new therapies.
为了生存,我们需要永久的能源供应。这是通过一系列反应提供给我们的细胞的,这些反应将我们所吃的食物分解成一种通用的燃料:三磷酸腺苷。这一过程主要发生在称为线粒体的细胞器中,被称为细胞呼吸。线粒体用来产生三磷酸腺苷的主要机械是呼吸链。它由嵌入线粒体内膜的四个复合体组成,它们共同作用建立一个称为质子动力的电化学梯度,并驱动ATP的合成。这种梯度大部分是以质子的形式存在的,这些质子被呼吸链复合体泵过线粒体内膜。越来越多的人类疾病与呼吸链成分的缺陷有关。在许多情况下,这是因为故障通过它们形成的质子梯度直接影响它们在能量生产中的主要作用,或者因为它导致破坏性自由基的产生增加。细胞色素c氧化酶(CcO)是呼吸链的末端酶。它将我们呼吸的氧气转化为水,并极大地促进了质子梯度的产生。其结构的改变(或突变)与多种病理有关,如肌病、难治性癫痫、神经系统疾病和前列腺癌。尽管线粒体CcO的整体化学已被很好地了解,但事实证明,要确定这是如何产生必要的质子梯度要困难得多。基于酶的现有结构(其中只有一种是线粒体起源的,在这种情况下是牛的),提出了各种假说,但受到了对较小细菌同源物进行的突变工作的挑战。今天,在理解线粒体CcO的机制,特别是人类疾病相关突变的影响方面,主要的缺陷似乎是缺乏一个系统来产生大量含有明确点突变的纯化蛋白。值得注意的是,存在于面包师酵母线粒体中的CcO与人类线粒体中的CcO几乎完全相同。编码CcO的核和线粒体DNA都容易发生突变,因此可以对CcO结构的任何部分进行改变,以研究其功能。因此,我们设计了一个酵母系统,允许大规模生产突变体,并将使用它来解决与人类线粒体CCOS相关的基本问题。首先,我们将通过测量CCOO在选定区域发生改变后泵送质子的能力来确定质子穿过蛋白质结构的路径。然后,我们将使用先进的技术,如红外光谱,来观察CCOO结构中原子的协调运动,并提供质子被泵浦的机制的实验证据。这应该会让我们更多地了解支配和控制复杂活动的原理,并将成为我们研究反应中心外部因素或信号如何在体内调节CcO活动的起点。这对了解人类CcO如何适应不同组织类型的不同能量需求将特别感兴趣。我们将致力于获得酵母CcO的详细3D结构来证实我们的假设。随着我们揭开Cco行动的细节,我们将在我们的酵母系统中引入已识别的人类疾病相关突变,以调查它们故障的性质。最后,我们的目标是逐步将人类基因或部分人类酶整合到我们的酵母系统中。这将为人类疾病的研究以及新疗法的开发和测试创造更好的模式。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy.
Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine.
  • DOI:
    10.1038/s41467-021-26158-2
  • 发表时间:
    2021-10-11
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jordan SF;Ioannou I;Rammu H;Halpern A;Bogart LK;Ahn M;Vasiliadou R;Christodoulou J;Maréchal A;Lane N
  • 通讯作者:
    Lane N
Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1
  • DOI:
    10.1038/s41594-018-0172-z
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Hartley, Andrew M.;Lukoyanova, Natalya;Marechal, Amandine
  • 通讯作者:
    Marechal, Amandine
Cryo-EM structure of a monomeric yeast S. cerevisiae complex IV isolated with maltosides: Implications in supercomplex formation.
  • DOI:
    10.1016/j.bbabio.2022.148591
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabriel Ing;Andrew M. Hartley;N. Pinotsis;A. Maréchal
  • 通讯作者:
    Gabriel Ing;Andrew M. Hartley;N. Pinotsis;A. Maréchal
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amandine MARECHAL其他文献

Amandine MARECHAL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amandine MARECHAL', 18)}}的其他基金

MRC Transition Support CDA Amandine MARECHAL
MRC 过渡支持 CDA Amandine MARECHAL
  • 批准号:
    MR/T032154/1
  • 财政年份:
    2021
  • 资助金额:
    $ 131.49万
  • 项目类别:
    Fellowship

相似国自然基金

芍药苷靶向α-烯醇化酶治疗实验性自身免疫性脑脊髓炎的机制研究
  • 批准号:
    82371809
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
糖料作物甘蔗GA2-oxidase(1/4/6/8)家族基因在节间伸长中的功能解析
  • 批准号:
    32360485
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
蒙药白益母草干预Noxs介导的VSMC表型调控修复血管损伤的机制研究
  • 批准号:
    81673694
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
淫羊藿苷抑制小胶质细胞激活及调控NADPH oxidase通路在抗帕金森病中的作用机制研究
  • 批准号:
    81460556
  • 批准年份:
    2014
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目
白藜芦醇抑制星型胶质细胞NADPH oxidase-sPLA2途径对脑缺血再灌注损伤的保护作用及机制
  • 批准号:
    81271312
  • 批准年份:
    2012
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
淫羊藿苷拮抗内源性甲醛神经毒性的作用及机制研究
  • 批准号:
    81102683
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
人源Quiescin-sulfhydryl Oxidase1在蛋白质氧化折叠和质量控制中的作用
  • 批准号:
    30900223
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Lysyl Oxidase在肿瘤转移中的作用机制研究
  • 批准号:
    30971495
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
SURF1基因新突变对COX功能的影响及致病机制探讨
  • 批准号:
    30471832
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
棉花GA20-Oxidase基因表达特性与纤维发育的关系
  • 批准号:
    30270798
  • 批准年份:
    2002
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
  • 批准号:
    2329629
  • 财政年份:
    2023
  • 资助金额:
    $ 131.49万
  • 项目类别:
    Standard Grant
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
  • 批准号:
    10642243
  • 财政年份:
    2023
  • 资助金额:
    $ 131.49万
  • 项目类别:
The elucidation of reaction mechanism of cytochrome c oxidase using XFEL time-resolved structure analysis
利用 XFEL 时间分辨结构分析阐明细胞色素 C 氧化酶的反应机制
  • 批准号:
    18K14635
  • 财政年份:
    2018
  • 资助金额:
    $ 131.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Control of Cell Respiration and Apoptosis by Phosphorylation of Cytochrome c
通过细胞色素 c 磷酸化控制细胞呼吸和凋亡
  • 批准号:
    9982332
  • 财政年份:
    2017
  • 资助金额:
    $ 131.49万
  • 项目类别:
Drug design based on a novel crystal structure of cytochrome bd oxidase in the respiratory chain.
基于呼吸链中细胞色素 bd 氧化酶的新型晶体结构的药物设计。
  • 批准号:
    16K07299
  • 财政年份:
    2016
  • 资助金额:
    $ 131.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Mechanisms of Copper Delivery to Mitochondrial Cytochrome c Oxidase
铜传递至线粒体细胞色素 c 氧化酶的分子机制
  • 批准号:
    10250356
  • 财政年份:
    2014
  • 资助金额:
    $ 131.49万
  • 项目类别:
Molecular Mechanisms of Copper Delivery to Mitochondrial Cytochrome c Oxidase
铜传递至线粒体细胞色素 c 氧化酶的分子机制
  • 批准号:
    10467011
  • 财政年份:
    2014
  • 资助金额:
    $ 131.49万
  • 项目类别:
Atomic structure of cytochrome bd-type terminal oxidase in the respiratory chain and response to environment.
呼吸链中细胞色素bd型末端氧化酶的原子结构及对环境的响应。
  • 批准号:
    25440050
  • 财政年份:
    2013
  • 资助金额:
    $ 131.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Chemistry of Proton Pumping by Cytochrome c Oxidases
细胞色素 c 氧化酶质子泵浦的量子化学
  • 批准号:
    8625315
  • 财政年份:
    2012
  • 资助金额:
    $ 131.49万
  • 项目类别:
Quantum Chemistry of Proton Pumping by Cytochrome c Oxidases
细胞色素 c 氧化酶质子泵浦的量子化学
  • 批准号:
    8819552
  • 财政年份:
    2012
  • 资助金额:
    $ 131.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了