Safer Aminoglycoside Therapeutics by Biosynthetic Engineering

通过生物合成工程实现更安全的氨基糖苷疗法

基本信息

  • 批准号:
    MR/M019020/1
  • 负责人:
  • 金额:
    $ 49.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Bacterial infections in hospital patients can lead to sepsis, in which an overwhelming infection of the bloodstream by toxin-producing bacteria becomes life-threatening. Very few new antibiotics are being developed, and so the established antibiotic gentamicin, discovered over 40 years ago, is likely to remain a vital mainstay in efforts to combat sepsis. Unfortunately there are real dangers associated with its use: a large percentage of patients treated with gentamicin, or related antibiotics, develop acute kidney failure (nephrotoxicity). The drug can also cause irreversible hearing loss (ototoxicity). Treatment is very costly because patients have to be closely monitored to minimise these severe side-effects. Sustained efforts are being made to research ways of minimising the side-effects of gentamicin, by altering the dosing strategy for example; and to understand the biochemical mechanisms by which the kidney and the inner ear are damaged. Unfortunately all the gentamicin used clinically is a mixture of compounds and different batches of commercial gentamicin have different amounts of each component. The individual components can be separated on a small scale but it has not been commercially viable to do this on the scale needed. It was believed that all components were equally effective and equally toxic, but in 2006 researchers in the USA re-tested each of the main components (known as C1, C1a, C2, and C2a) and showed that, surprisingly, purified component C2 is fully effective as an antibiotic but not nephrotoxic at all (at least in rats). The aim of this project is to build on the success of our previous MRC-supported research aimed at deciphering all of the individual steps in the late stages of gentamicin biosynthesis. We now think that the best prospect for obtaining C2 by fermentation is to use as a feedstock the widely commercially available precursor called G418. However, we still need to deconvolute the role of key individual enzymes in this part of the pathway. The ready availability of such monocomponent gentamicins would encourage potentially safer formulations of the antibiotic to be tested. Since gentamicins and related aminoglycosides are also promising agents for the correction of certain human genetic diseases, such as cystic fibrosis and the muscle-wasting disease Duchenne muscular dystrophy, there could be wider medical benefits too.
医院患者的细菌感染可导致败血症,由产生毒素的细菌对血液的压倒性感染会危及生命。目前正在开发的新抗生素很少,因此40多年前发现的现有抗生素庆大霉素很可能仍然是抗击败血症的重要支柱。不幸的是,使用庆大霉素确实存在危险:使用庆大霉素或相关抗生素治疗的患者中,有很大比例会出现急性肾功能衰竭(肾毒性)。该药物还可能导致不可逆转的听力损失(耳毒性)。治疗费用非常昂贵,因为必须密切监测患者,以将这些严重的副作用降至最低。人们一直在努力研究将庆大霉素的副作用降至最低的方法,例如通过改变给药策略;并了解肾脏和内耳受损的生化机制。不幸的是,所有临床上使用的庆大霉素都是化合物的混合物,不同批次的商业庆大霉素每种成分的含量都不同。单个组件可以小规模分离,但按所需规模进行分离在商业上并不可行。人们认为所有成分都是同等有效和同等毒性的,但在2006年,美国的研究人员重新测试了每一种主要成分(即C1、C1a、C2和C2a),结果表明,令人惊讶的是,纯化的成分C2作为抗生素完全有效,但完全没有肾毒性(至少对大鼠)。这个项目的目的是在我们之前由MRC支持的研究的成功的基础上,旨在破译庆大霉素生物合成后期阶段的所有单独步骤。我们现在认为,通过发酵获得C2的最好前景是以商业上广泛存在的名为G418的前体为原料。然而,我们仍然需要了解关键的单个酶在这一部分途径中的作用。这种单组份庆大霉素的现成供应将鼓励潜在更安全的抗生素配方进行测试。由于庆大霉素和相关的氨基糖苷类药物也很有希望用于纠正某些人类遗传性疾病,如囊性纤维化和肌肉萎缩症Duchenne肌营养不良症,因此也可能有更广泛的医疗益处。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanistic Insights into Dideoxygenation in Gentamicin Biosynthesis
  • DOI:
    10.1021/acscatal.1c03508
  • 发表时间:
    2021-09-20
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Li, Sicong;Bury, Priscila dos Santos;Sun, Yuhui
  • 通讯作者:
    Sun, Yuhui
Methyltransferases of gentamicin biosynthesis.
庆大霉素生物合成的甲基转移酶
Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex.
描述庆大霉素 X2(庆大霉素 C 抗生素复合物的常见前体)的生物合成
  • DOI:
    10.1016/j.chembiol.2014.12.012
  • 发表时间:
    2015-02-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang C;Huang F;Moison E;Guo J;Jian X;Duan X;Deng Z;Leadlay PF;Sun Y
  • 通讯作者:
    Sun Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Leadlay其他文献

Crystal structure of BtrK, a decarboxylase involved in the (<em>S</em>)-4-amino-2-hydroxybutyrate (AHBA) formation during butirosin biosynthesis
  • DOI:
    10.1016/j.molstruc.2022.133576
  • 发表时间:
    2022-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Laura A. Rivas Arenas;Fernanda C.R. de Paiva;Nicolas de O. Rossini;YanYan Li;Jonathan Spencer;Peter Leadlay;Marcio V.B. Dias
  • 通讯作者:
    Marcio V.B. Dias

Peter Leadlay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Leadlay', 18)}}的其他基金

Development of new tools for de novo polyketide synthase design
开发用于从头设计聚酮合酶的新工具
  • 批准号:
    BB/M012158/1
  • 财政年份:
    2015
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Research Grant
Safer aminoglycoside therapeutics by biosynthetic engineering
通过生物合成工程开发更安全的氨基糖苷类疗法
  • 批准号:
    G1001687/1
  • 财政年份:
    2011
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Research Grant
Assembly-line biosynthesis of polyethers that selectively kill cancer stem cells
选择性杀死癌症干细胞的聚醚的装配线生物合成
  • 批准号:
    BB/I002413/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Research Grant
Assembly of chimeric glycosyltransferases for directing biosynthesis of natural products
用于指导天然产物生物合成的嵌合糖基转移酶的组装
  • 批准号:
    BB/F023111/1
  • 财政年份:
    2008
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Research Grant
Enzymology and engineering of the biosynthesis of polyether antibiotics
聚醚抗生素生物合成的酶学与工程
  • 批准号:
    BB/D018943/1
  • 财政年份:
    2006
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Research Grant

相似海外基金

Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 49.32万
  • 项目类别:
Shaping Next Generation Aminoglycoside Antibiotics for Treatment of Multidrug-Resistant Diseases
打造下一代氨基糖苷类抗生素治疗多重耐药性疾病
  • 批准号:
    10585038
  • 财政年份:
    2023
  • 资助金额:
    $ 49.32万
  • 项目类别:
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
  • 批准号:
    10569609
  • 财政年份:
    2022
  • 资助金额:
    $ 49.32万
  • 项目类别:
NON-CLINICAL SAFETY ASSESSMENT OF ORC-13661 TO SUPPORT AMINOGLYCOSIDE INDUCED HEARING LOSS INDICATION. ADDITIONAL FUNDS.
ORC-13661 支持氨基糖苷引起的听力损失适应症的非临床安全性评估。
  • 批准号:
    10972986
  • 财政年份:
    2022
  • 资助金额:
    $ 49.32万
  • 项目类别:
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
  • 批准号:
    10443277
  • 财政年份:
    2022
  • 资助金额:
    $ 49.32万
  • 项目类别:
Cefazolin plus aminoglycoside compared to piperacillin-tazobactam for type 3 open fractures
头孢唑啉联合氨基糖苷类药物与哌拉西林-他唑巴坦治疗 3 型开放性骨折的比较
  • 批准号:
    486306
  • 财政年份:
    2022
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Studentship Programs
Repurposing momelotinib for the prevention of aminoglycoside-induced ototoxicity
重新利用莫洛替尼预防氨基糖苷类引起的耳毒性
  • 批准号:
    10554341
  • 财政年份:
    2021
  • 资助金额:
    $ 49.32万
  • 项目类别:
Repurposing momelotinib for the prevention of aminoglycoside-induced ototoxicity
重新利用莫洛替尼预防氨基糖苷类引起的耳毒性
  • 批准号:
    10341150
  • 财政年份:
    2021
  • 资助金额:
    $ 49.32万
  • 项目类别:
Creation of Next-generation Aminoglycoside Antibiotics Active against Multidrug-resistant Gram-negative Bacteria
开发对多重耐药革兰氏阴性菌具有活性的下一代氨基糖苷类抗生素
  • 批准号:
    20K06982
  • 财政年份:
    2020
  • 资助金额:
    $ 49.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
De Novo Synthesis, and Functional and Structural Characterization of Novel Aminoglycoside Analogues to Bypass Resistance Mechanisms and Optimize Selectivity
新型氨基糖苷类似物的从头合成、功能和结构表征,以绕过耐药机制并优化选择性
  • 批准号:
    10676201
  • 财政年份:
    2020
  • 资助金额:
    $ 49.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了