A general framework to adjust for missing confounders in observational studies

调整观察性研究中缺失的混杂因素的通用框架

基本信息

  • 批准号:
    MR/M025195/1
  • 负责人:
  • 金额:
    $ 41.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Assessing the impact of a risk factor/exposure X on a health outcome Y in observational studies is invariably subject to confounding issues. Cohort studies are an ideal source of information as they typically contain a rich set of individual level variables. Nevertheless a study based only on a cohort may suffer from problems of selection bias and lack of population representativeness. Cohort studies may also lack statistical power to assess rare outcomes, and geographical or other group-level variations which limits the extent to which contextual factors such as area level social deprivation can be investigated. Routinely collected administrative data are a good alternative in terms of representativeness; however, these data sources typically have a limited number of variables for a large population, and might miss important predictors/confounders leading to potentially biased estimation of the risks.We propose a general framework that integrating these two sources of data takes advantage of the detailed information on confounders from cohorts/surveys and benefits from the statistical power and population representativeness of the registries. This strategy entails missing data imputation as administrative datasets contain data on each individual in the target population, while cohorts/surveys typically cover only a subset of individuals, so that the confounders obtained from the latter source will be partially measured (i.e. will be missing for some of the units in the registries). Imputing each single confounder could prove computationally unfeasible and constrained to several assumptions given the potentially large number of confounders to consider.We will build a propensity score like index (which we will call Partial Propensity Score - PPS) to summarise the values of the confounders from the cohorts/surveys so we will need to impute only one variable when missing. Through a flexible model the index will be included in the epidemiological analysis and we will be able to provide a direct estimate of the causal link between X and Y as all the confounders have been taken into account.We will build our framework first on individual level data and then extend it to aggregated level, e.g. small area studies generally used to summarise spatial and spatio-temporal variations in epidemiological risks (e.g. for disease surveillance) or to focus on aetiological questions (e.g. to unveil environmental/social determinant of mortality or morbidity). We will use Bayesian full probability modelling which provides a flexible approach of incorporating different assumptions about the missing data mechanism and accommodating different patterns of missing data, and through realistic simulation studies we will evaluate the properties of the framework and compare it with other state-of-the-art methods. In addition two real case studies will be considered. The first will assess the risk of low birth weight given exposure to chlorine in water in Northern England and will be based on individual level data. The second will investigate the impact of air pollution concentration and noise exposure on hospital admissions from cardiovascular causes in England and Wales and will be at the small area level. Through the case studies we will be able to unveil how our proposed methodology changes the results of epidemiological analyses in terms of the effect of exposure on the health outcomes, compared to the commonly used analysis based on data from population registries only. This will have the potential of translating into changes in health policies and strategies to take into account the improved, more accurate results and could become the new state-of-the-art method for analysis of observational studies.
在观察性研究中,评估风险因素/暴露X对健康结果Y的影响总是会遇到令人困惑的问题。队列研究是一个理想的信息来源,因为它们通常包含一组丰富的个体水平变量。然而,仅以队列为基础的研究可能会遇到选择偏差和缺乏总体代表性的问题。队列研究也可能缺乏统计能力来评估罕见的结果,以及地理或其他群体层面的差异,这限制了地区层面的社会剥夺等背景因素可以被调查的程度。就代表性而言,常规收集的行政数据是一个很好的替代方案;然而,对于大量人口来说,这些数据来源的变量数量通常有限,可能会错过重要的预测因素/混杂因素,从而导致对风险的潜在偏见估计。我们提出了一个一般框架,即整合这两个数据来源,利用来自队列/调查的混杂因素的详细信息,并受益于登记的统计能力和人口代表性。由于行政数据集包含目标人口中每个人的数据,而队列/调查通常只涵盖个人的一个子集,因此,从后一个来源获得的混杂因素将被部分衡量(即,登记册中的一些单位将会缺失),因此这一战略需要缺失数据。考虑到要考虑的潜在大量混杂因素,对每个单独的混杂因素进行计算可能被证明是不可行的,并且受到几个假设的限制。我们将建立一个类似于指数的倾向得分(我们将其称为部分倾向得分-PPS)来总结来自队列/调查的混杂因素的值,因此我们将只需要在缺失时归因于一个变量。通过一个灵活的模型,该指数将被包括在流行病学分析中,我们将能够提供X和Y之间的因果联系的直接估计,因为所有混杂因素都已被考虑在内。我们将首先基于个人水平的数据建立我们的框架,然后将其扩展到聚集水平,例如,通常用于总结流行病风险的空间和时空变化的小区域研究(例如,用于疾病监测)或关注病因学问题(例如,揭示环境/社会决定死亡或发病率的因素)。我们将使用贝叶斯全概率建模,它提供了一种灵活的方法,纳入了关于缺失数据机制的不同假设,并适应了不同的缺失数据模式,通过现实的模拟研究,我们将评估该框架的特性,并将其与其他最先进的方法进行比较。此外,还将考虑两个真实的案例研究。第一个将评估在英格兰北部水中暴露于氯的情况下低出生体重的风险,并将基于个人水平数据。第二项调查将调查空气污染浓度和噪音暴露对英格兰和威尔士因心血管原因入院的影响,并将在小范围内进行。通过案例研究,我们将能够揭示,与仅基于人口登记数据的常用分析相比,我们提出的方法如何在暴露对健康结果的影响方面改变流行病学分析的结果。这将有可能转化为卫生政策和战略的变化,以考虑到改进后的、更准确的结果,并可能成为分析观察性研究的新的最先进的方法。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using ecological propensity score to adjust for missing confounders in small area studies.
  • DOI:
    10.1093/biostatistics/kxx058
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Y;Pirani M;Hansell AL;Richardson S;Blangiardo M
  • 通讯作者:
    Blangiardo M
A flexible hierarchical framework for improving inference in area-referenced environmental health studies.
A joint Bayesian space-time model to integrate spatially misaligned air pollution data in R-INLA
  • DOI:
    10.1002/env.2644
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Forlani, C.;Bhatt, S.;Blangiardo, M.
  • 通讯作者:
    Blangiardo, M.
Using Ecological Propensity Score to Adjust for Missing Confounders in Small Area Studies
使用生态倾向评分来调整小区域研究中缺失的混杂因素
  • DOI:
    10.48550/arxiv.1605.00814
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Y
  • 通讯作者:
    Wang Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marta Blangiardo其他文献

Forand Bill Hearings
  • DOI:
    10.1016/s0095-9561(16)35688-2
  • 发表时间:
    1959-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantin-Cristian Topriceanu;Xiangpu Gong;Mit Shah;Katie Eminson;Glory O Atilola;Nishi Chaturvedi;Calvin Jephcote;Kathryn Adams;Marta Blangiardo;John Gulliver;Alex Rowlands;Declan O'Regan;Anna Hansell;Gabriella Captur
  • 通讯作者:
    Gabriella Captur
Inequality in exposure to daily aircraft noise near heathrow airport: An empirical study
希思罗机场附近日常飞机噪音暴露的不平等性:一项实证研究
  • DOI:
    10.1016/j.healthplace.2025.103421
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Xiangpu Gong;Nicole Itzkowitz;Glory O. Atilola;Kathryn Adams;Calvin Jephcote;Marta Blangiardo;John Gulliver;Anna Hansell
  • 通讯作者:
    Anna Hansell
APhA Headquarters Annex
  • DOI:
    10.1016/s0095-9561(16)35692-4
  • 发表时间:
    1959-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantin-Cristian Topriceanu;Xiangpu Gong;Mit Shah;Katie Eminson;Glory O Atilola;Nishi Chaturvedi;Calvin Jephcote;Kathryn Adams;Marta Blangiardo;John Gulliver;Alex Rowlands;Declan O'Regan;Anna Hansell;Gabriella Captur
  • 通讯作者:
    Gabriella Captur
National Pharmacy Week
  • DOI:
    10.1016/s0095-9561(16)35694-8
  • 发表时间:
    1959-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantin-Cristian Topriceanu;Xiangpu Gong;Mit Shah;Katie Eminson;Glory O Atilola;Nishi Chaturvedi;Calvin Jephcote;Kathryn Adams;Marta Blangiardo;John Gulliver;Alex Rowlands;Declan O'Regan;Anna Hansell;Gabriella Captur
  • 通讯作者:
    Gabriella Captur
Canine serological survey and dog culling and its relationship with human visceral leishmaniasis in an endemic urban area
  • DOI:
    10.1186/s12879-020-05125-0
  • 发表时间:
    2020-06-05
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Patricia Marques Moralejo Bermudi;Danielle Nunes Carneiro Castro Costa;Caris Maroni Nunes;Jose Eduardo Tolezano;Roberto Mitsuyoshi Hiramoto;Lilian Aparecida Colebrusco Rodas;Rafael Silva Cipriano;Marta Blangiardo;Francisco Chiaravalloti-Neto
  • 通讯作者:
    Francisco Chiaravalloti-Neto

Marta Blangiardo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marta Blangiardo', 18)}}的其他基金

A statistical framework for the apportionment of particulate contaminants and their health effect determination
颗粒污染物分配及其健康影响确定的统计框架
  • 批准号:
    MR/T044713/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Research Grant

相似海外基金

Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
  • 批准号:
    2337991
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
  • 批准号:
    2326816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了