MICA: Optogenetic dissection of homeostatic and Hebbian components of cortical plasticity

MICA:皮质可塑性稳态和赫布成分的光遗传学解剖

基本信息

  • 批准号:
    MR/N003896/1
  • 负责人:
  • 金额:
    $ 141.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The cerebral cortex is a vitally important part of the brain; it is most highly developed in humans and endows us with many of our uniquely human qualities. When the cortex malfunctions in psychiatric conditions such as schizophrenia and autism, or degenerates in conditions such as Alzheimer's disease, those uniquely human qualities are lost or degraded. Ideas about how we might tackle these debilitating conditions have changed over the years. As pointed out by the head of the US National Institute for Mental Health, the way we used to understand mental health disorders as "chemical imbalances" or as "social constructs" seem strangely outdated and have given way amidst a flurry of discoveries to the newer ideas of mental health conditions as disorders of "brain circuits" arising from a combination of genetic risk factors and environmental effects(1). Perhaps it is not entirely surprising that we still only understand the operation of the cortical "brain circuit" at a very rudimentary level at present, after all it is extremely complex. However, a number of powerful molecular and optogenetic tools are now available for unpicking this complicated knot (2) . Our approach is to look at a relatively simple part of the cortex known as the barrel cortex, where the basic architecture of the cortex can be seen using simple histochemical stains or physiological imaging methods, and to try to understand the cortical circuits involved. The elementary modules that make up the cortex are known as cortical columns and consist of groups of interconnected neurones arranged in six layers. Higher order animals with more complicated cortex have more columns than lower order animals, but the basic architecture of the columns are similar in both cases. We can therefore understand a great deal about the human cortical circuitry by analysing the mouse barrel cortex circuitry. We want to know how information is processed within these circuits and to understand the molecular mechanisms that allow the circuits to change in response to altered experience via their synaptic plasticity mechanisms. Our present work on the circuitry and plasticity of this system has already yielded insights into schizophrenia and AIDS-related dementia. In the present work we combine the new technologies of optogenetic pathway stimulation, dendritic spine imaging and optical manipulation of synapses with our substantial knowledge and experience of the operation of the barrel cortex to understand the cortical circuit. Our immediate plan includes provision to test whether our findings generalise to visual cortex.We recently made a ground breaking discovery in finding that two major subdivisions of the layer 5 cells, the regular spiking (RS) and intrinsic bursting (IB) cells show fundamentally different plasticity. These cells are the major output cells in the cortex. To a first order analysis, RS cells show depression but not potentiation while IB cells show potentiation but not depression. To a second order analysis, RS cells showed potentiation to subcortical but not intracortical input. We have now discovered a further difference at the molecular level: RS cells exhibit homeostatic (TNFalpha-dependent) plasticity in response to depression, while IB cells show Hebbian CaMKII dependent potentiation. We need to know how these plasticity differences arise, whether they are general to other cortical areas and how they fit into the general response of the cortical circuit to changes in sensory input. 1. T.R.Insel Translating scientific opportunity into public health impact: a strategic plan for research on mental illness. Arch Gen Psychiatry 66,128 (2009)2. L. Madisen et al. A toolboox of cre-dependent optogenetic transgenic mice for light induced activation and silencing. Nat. Neurosci 15,793 (2012)
大脑皮层是大脑中至关重要的一部分;它在人类中最为发达,并赋予我们许多独特的人类品质。当大脑皮层在精神分裂症和自闭症等精神疾病中出现故障,或在阿尔茨海默病等疾病中退化时,这些独特的人类品质就会丧失或退化。多年来,关于我们如何应对这些使人衰弱的疾病的想法发生了变化。正如美国国家心理健康研究所所长所指出的那样,我们过去将精神健康障碍理解为“化学失衡”或“社会结构”的方式似乎奇怪地过时了,并且在一系列发现中让位于将精神健康状况理解为由遗传风险因素和环境影响共同引起的“大脑回路”障碍的新观点(1)。也许这并不完全令人惊讶,我们目前仍然只是在一个非常初级的水平上了解皮层“大脑回路”的运作,毕竟它是极其复杂的。然而,现在有许多强大的分子和光遗传学工具可以解开这个复杂的结(2)。我们的方法是观察皮层中一个相对简单的部分,即桶状皮层,在那里,皮层的基本结构可以通过简单的组织化学染色或生理成像方法看到,并试图了解涉及的皮层回路。构成皮层的基本模块被称为皮层柱,它由一组相互连接的神经元组成,这些神经元排列在六层中。具有更复杂皮层的高级动物比低级动物有更多的脑柱,但这两种动物脑柱的基本结构是相似的。因此,我们可以通过分析老鼠的桶状皮质回路,对人类的皮质回路有更深入的了解。我们想知道信息是如何在这些回路中被处理的,并了解允许回路通过突触可塑性机制对改变的经验做出反应的分子机制。我们目前对这个系统的回路和可塑性的研究已经让我们对精神分裂症和艾滋病相关的痴呆有了深入的了解。在目前的工作中,我们将光遗传通路刺激,树突脊柱成像和突触光学操作的新技术与我们对桶状皮质操作的丰富知识和经验相结合,以了解皮质回路。我们近期的计划包括测试我们的发现是否适用于视觉皮层。我们最近有了一个突破性的发现,发现第5层细胞的两个主要细分,即规则峰值细胞(RS)和内在破裂细胞(IB),表现出根本不同的可塑性。这些细胞是皮层的主要输出细胞。在一阶分析中,RS细胞表现为抑制而非增强,IB细胞表现为增强而非抑制。在二级分析中,RS细胞显示皮层下输入增强,而不是皮层内输入增强。我们现在在分子水平上发现了进一步的差异:RS细胞在对抑郁的反应中表现出稳态(tnfalpha依赖)可塑性,而IB细胞表现出Hebbian CaMKII依赖性增强。我们需要知道这些可塑性差异是如何产生的,它们是否适用于其他皮层区域,以及它们如何适应皮层回路对感觉输入变化的一般反应。1. 把科学机会转化为公共卫生影响:精神疾病研究的战略计划。Arch Gen Psychiatry 66,128 (2009)L. Madisen等。用于光诱导激活和沉默的cree依赖性光遗传转基因小鼠工具箱。Nat. Neurosci 15,793 (2012)

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calcineurin knockout mice show a selective loss of small spines.
钙调神经磷酸酶基因敲除小鼠表现出小刺的选择性丧失。
  • DOI:
    10.1016/j.neulet.2018.02.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Okazaki H
  • 通讯作者:
    Okazaki H
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness.
  • DOI:
    10.1038/s41398-021-01256-3
  • 发表时间:
    2021-02-19
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Bonneau M;Sullivan STO;Gonzalez-Lozano MA;Baxter P;Gautier P;Marchisella E;Hardingham NR;Chesters RA;Torrance H;Howard DM;Jansen MA;McMillan M;Singh Y;Didier M;Koopmans F;Semple CA;McIntosh AM;Volkmer H;Loos M;Fox K;Hardingham GE;Vernon AC;Porteous DJ;Smit AB;Price DJ;Kirsty Millar J
  • 通讯作者:
    Kirsty Millar J
Handbook of in Vivo Neural Plasticity Techniques
体内神经可塑性技术手册
  • DOI:
    10.1016/b978-0-12-812028-6.00010-0
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fox K
  • 通讯作者:
    Fox K
Hebbian and Homeostatic Plasticity Mechanisms in Regular Spiking and Intrinsic Bursting Cells of Cortical Layer 5.
  • DOI:
    10.1016/j.neuron.2015.09.025
  • 发表时间:
    2015-11-04
  • 期刊:
  • 影响因子:
    16.2
  • 作者:
    Greenhill SD;Ranson A;Fox K
  • 通讯作者:
    Fox K
Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex.
桶皮层2/3和5层中稳态可塑性的时间阶段和机制。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Fox其他文献

Rapid access arrhythmia clinic for the diagnosis and management of new arrhythmias presenting in the community: a prospective, descriptive study
快速访问心律失常诊所,用于诊断和管理社区中出现的新心律失常:一项前瞻性、描述性研究
  • DOI:
    10.1136/hrt.2003.021493
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    J. Martins;Kevin Fox;David A. Wood;D. Lefroy;Timothy Collier;Nicholas S. Peters
  • 通讯作者:
    Nicholas S. Peters
Implementing the data center energy productivity metric
实施数据中心能源生产率指标
  • DOI:
    10.1145/2367736.2367741
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Landon H. Sego;A. Márquez;Andrew Rawson;T. Cader;Kevin Fox;W. Gustafson;C. Mundy
  • 通讯作者:
    C. Mundy
Analysis of outcomes for high-risk breast cancer based on interval from surgery to postmastectomy radiation therapy.
基于从手术到乳房切除术后放射治疗的间隔对高风险乳腺癌的结果进行分析。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Metz Jm;D. Schultz;Kevin Fox;A. Mathews;John H. Glick;L. Solin
  • 通讯作者:
    L. Solin
Ten reasons why every junior doctor should spend time working in a remote and rural hospital
  • DOI:
    10.7861/fhj.2019-0050
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Fox;Wendy Corstorphine;Jenny Frazer;Anna Johnstone;Alasdair Miller;Neil Shepherd;Paul Cooper
  • 通讯作者:
    Paul Cooper
The effects of intracoronary substance P and acetylcholine on coronary blood flow in patients with idiopathic dilated cardiomyopathy.
冠脉内P物质和乙酰胆碱对特发性扩张型心肌病患者冠状动脉血流的影响。
  • DOI:
    10.1093/oxfordjournals.eurheartj.a060427
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    39.3
  • 作者:
    D. Holdright;D. Clarke;Kevin Fox;P. Poole‐Wilson;P. Collins
  • 通讯作者:
    P. Collins

Kevin Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Fox', 18)}}的其他基金

Cortical feedback circuits for sensory integration and control of synaptic plasticity
用于感觉统合和突触可塑性控制的皮层反馈电路
  • 批准号:
    MR/W004844/1
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Research Grant
Cortical pathways and synaptic mechanisms for texture discrimination learning in rodents
啮齿类动物纹理辨别学习的皮层通路和突触机制
  • 批准号:
    BB/T007028/1
  • 财政年份:
    2020
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Research Grant
Investigation of cortical memory circuits in normal and disease model mice using synaptic optogenetics
使用突触光遗传学研究正常和疾病模型小鼠的皮质记忆回路
  • 批准号:
    MR/M501670/1
  • 财政年份:
    2014
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Research Grant
The role of DISC1 in synaptic function and circuit formation during critical periods of cortical development
DISC1 在皮质发育关键时期突触功能和回路形成中的作用
  • 批准号:
    MR/K004603/1
  • 财政年份:
    2012
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Research Grant
Molecular and structural determinants of plasticity in the cerebral cortex
大脑皮层可塑性的分子和结构决定因素
  • 批准号:
    G0901299-E01/1
  • 财政年份:
    2010
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Research Grant

相似海外基金

Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
  • 批准号:
    10616188
  • 财政年份:
    2023
  • 资助金额:
    $ 141.55万
  • 项目类别:
Optogenetic dissection of Erk signal interpretation in early embryogenesis
早期胚胎发生中 Erk 信号解释的光遗传学解析
  • 批准号:
    10679294
  • 财政年份:
    2023
  • 资助金额:
    $ 141.55万
  • 项目类别:
Optogenetic and Chemogenetic Dissection of Cell Transplants
细胞移植的光遗传学和化学遗传学解剖
  • 批准号:
    10617567
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
Optogenetic dissection of inter-hemispheric frontal eye field circuits for eye movements
用于眼球运动的半球间额眼场回路的光遗传学解剖
  • 批准号:
    10527512
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
Behavioural, Optogenetic and Genetic Dissection of Simple Forms of Plasticity
简单形式可塑性的行为、光遗传学和遗传学剖析
  • 批准号:
    RGPIN-2019-05558
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Discovery Grants Program - Individual
Single-component optogenetic tools to bidirectionally control RhoA in mechanotransduction
在力转导中双向控制 RhoA 的单组分光遗传学工具
  • 批准号:
    10521872
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
Optogenetic dissection of inter-hemispheric frontal eye field circuits for eye movements
用于眼球运动的半球间额眼场回路的光遗传学解剖
  • 批准号:
    10707079
  • 财政年份:
    2022
  • 资助金额:
    $ 141.55万
  • 项目类别:
Programmable evolution of optogenetic systems
光遗传学系统的可编程进化
  • 批准号:
    10318056
  • 财政年份:
    2021
  • 资助金额:
    $ 141.55万
  • 项目类别:
Programmable evolution of optogenetic systems
光遗传学系统的可编程进化
  • 批准号:
    10480900
  • 财政年份:
    2021
  • 资助金额:
    $ 141.55万
  • 项目类别:
Behavioural, Optogenetic and Genetic Dissection of Simple Forms of Plasticity
简单形式可塑性的行为、光遗传学和遗传学剖析
  • 批准号:
    RGPIN-2019-05558
  • 财政年份:
    2021
  • 资助金额:
    $ 141.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了