Evaluation of Bayesian adaptive designs for Phase 3 effectiveness trials

第三阶段有效性试验的贝叶斯自适应设计评估

基本信息

  • 批准号:
    MR/N028287/2
  • 负责人:
  • 金额:
    $ 24.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Clinical trials are time consuming, difficult and expensive, and represent a substantial barrier to improving treatments for patients. Researchers and funders have recognised the need for trials to become more efficient, yet the overwhelming majority of trials continue to use traditional methods. A different approach to trials, Bayesian adaptive trial methodology, has been developed over the last 20 years, and has the potential to allow trials to answer their questions more efficiently, often meaning that effectiveness can be determined with fewer patients and in a shorter time. This approach uses Bayesian statistical methods, and includes frequent interim analyses, to allow learning from the trial data collected so far, and subsequent modification of the trial. For example, the proportion of participants allocated to each intervention could be changed to ensure that participants are allocated most efficiently, randomisation to one arm could be stopped, if it has become clear that it is not effective, or the whole trial could be terminated early if it has achieved its aim. These adaptations may enable trials to be run more efficiently, and allow evaluation of more treatments with the same resources.Our aim in this project is to evaluate Bayesian adaptive trial methods, to find out whether they are likely to lead to practical benefits for triallists and funders, in terms of their size, duration and cost. If so, there would be a strong case for using this methodology more widely, and it could potentially become the standard methodology in the future.To evaluate these methods we will perform three studies using data from trials run by the Warwick Clinical Trials Unit. In Study 1, each trial will be redesigned using Bayesian adaptive methods, which will involve producing a number of candidate designs, then performing extensive simulations to understand their performance and to fine-tune their operational parameters such as number and timing of analyses, and threshold values for decisions. A single preferred design will be selected by a group of clinicians and researchers who were not involved in the original trial. The trial will then be re-run, using the original sequence of patients, and we will compare the re-run trial with the original overall duration, number of patients, results, number of patients receiving the more favourable treatment, and cost of the trial. Study 1 will involve four case studies, using trials that had different issues: one that was stopped early because the intervention appeared harmful, one multi-armed trial, one that concluded superiority of its intervention, and one that recruited for a long time but showed no difference.Study 2 will use the same methods as Study 1, but will involve trials that have completed recruitment but have not yet been reported; their results will therefore not yet be known.Study 3 will involve re-designing trials that use a conventional design and are starting or in the early stages of recruitment. In parallel with the real-life trial conduct, we will performing Bayesian interim analyses according to the redesigned schedule as the trial proceeds, in real time. This will show whether the Bayesian adaptive design would lead to different conduct, results and conclusions from the conventional design. No results from these "shadow" analyses will be released until the trial has concluded.
临床试验耗时、困难且昂贵,是改善患者治疗的重大障碍。科学家和资助者已经认识到需要提高试验的效率,然而绝大多数试验仍在使用传统方法。一种不同的试验方法,贝叶斯适应性试验方法,在过去的20年里已经发展起来,它有可能让试验更有效地回答他们的问题,这通常意味着可以用更少的病人和更短的时间来确定有效性。该方法使用贝叶斯统计方法,并包括频繁的中期分析,以便从迄今收集的试验数据中学习,并随后对试验进行修改。例如,可以改变分配到每种干预措施的参与者的比例,以确保参与者的分配最有效;如果已经清楚地表明随机分配到一个手臂是无效的,可以停止随机分配;或者如果达到了目的,可以提前终止整个试验。这些调整可能使试验更有效地进行,并允许用相同的资源评估更多的治疗方法。在这个项目中,我们的目标是评估贝叶斯自适应试验方法,以找出它们是否有可能在规模、持续时间和成本方面为试验者和资助者带来实际利益。如果是这样的话,将有一个强有力的案例来更广泛地使用这种方法,并且它可能在将来成为标准的方法。为了评估这些方法,我们将使用由华威临床试验单位进行的试验数据进行三项研究。在研究1中,每个试验将使用贝叶斯自适应方法进行重新设计,这将涉及产生许多候选设计,然后进行广泛的模拟以了解其性能并微调其操作参数,如分析的数量和时间,以及决策的阈值。一组没有参与原始试验的临床医生和研究人员将选择一个单一的首选设计。然后将使用原始患者序列重新进行试验,并将重新进行的试验与原始总持续时间、患者数量、结果、接受更有利治疗的患者数量和试验成本进行比较。研究1将涉及四个案例研究,使用具有不同问题的试验:一个因干预出现有害而早期停止的试验,一个多臂试验,一个得出干预优势的试验,以及一个招募了很长时间但没有显示差异的试验。研究2将使用与研究1相同的方法,但将纳入已完成招募但尚未报道的试验;因此,他们的结果还不得而知。研究3将涉及重新设计使用传统设计的试验,这些试验正在开始或处于招募的早期阶段。在实际试验进行的同时,随着试验的进行,我们将根据重新设计的时间表实时执行贝叶斯中期分析。这将显示贝叶斯自适应设计是否会导致与传统设计不同的行为、结果和结论。在审判结束之前,这些“影子”分析的结果不会公布。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian group sequential designs for phase III emergency medicine trials: a case study using the PARAMEDIC2 trial.
III 期急诊医学试验的贝叶斯组序贯设计:使用 PARAMEDIC2 试验的案例研究。
  • DOI:
    10.1186/s13063-019-4024-x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ryan EG
  • 通讯作者:
    Ryan EG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Gates其他文献

Reproducibility of the cervical range of motion (CROM) device for individuals with sub-acute whiplash associated disorders
  • DOI:
    10.1007/s00586-011-2096-8
  • 发表时间:
    2011-12-03
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Mark A. Williams;Esther Williamson;Simon Gates;Matthew W. Cooke
  • 通讯作者:
    Matthew W. Cooke
1489 STAR-TREC (NCT02945566): A randomised phase II/III trial of CRT versus 5x5 Gy SCRT for organ preservation in early/intermediate risk rectal cancer
1489 STAR - TREC(NCT02945566):一项针对早期/中危直肠癌器官保留的放化疗(CRT)与5×5戈瑞短程放疗(SCRT)对比的随机II/III期试验
  • DOI:
    10.1016/s0167-8140(25)00493-1
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Corrie A.M. Marijnen;David Sebag-Montefiore;Victoria Homer;Simon Gates;Issam Al-Najami;Eva Angenete;Ane Appelt;Gunnar Baatrup;Geerard Beets;Jacobus W.A. Burger;Karen-Lise Garm Spindler;Ian Geh;Alexandra Gilbert;Karin Haustermans;Fabian Holman;Stephan Korsgen;Pehr Lind;Anna Martling;Femke Peters;Mark Teo;Johannes W.H. de Wilt
  • 通讯作者:
    Johannes W.H. de Wilt
Utstein recommendations for reporting out of hospital cardiac arrest (OHCA) registry studies – A review of the literature
  • DOI:
    10.1016/j.resuscitation.2017.11.030
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samantha J. McDonnell;Simon Gates;Gavin D. Perkins
  • 通讯作者:
    Gavin D. Perkins
Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis
  • DOI:
    10.1007/s00134-014-3553-8
  • 发表时间:
    2014-11-22
  • 期刊:
  • 影响因子:
    21.200
  • 作者:
    Paul Dark;Bronagh Blackwood;Simon Gates;Danny McAuley;Gavin D. Perkins;Ronan McMullan;Claire Wilson;Daniel Graham;Kate Timms;Geoffrey Warhurst
  • 通讯作者:
    Geoffrey Warhurst
Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol
LightCycler® SeptiFast 用于检测和鉴定疑似脓毒症患者血液中病原体的准确性:系统评价方案
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    P. Dark;Claire Wilson;B. Blackwood;Danny McAuley;Gavin D Perkins;R. McMullan;Simon Gates;Geoffrey Warhurst
  • 通讯作者:
    Geoffrey Warhurst

Simon Gates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Gates', 18)}}的其他基金

Evaluation of Bayesian adaptive designs for Phase 3 effectiveness trials
第三阶段有效性试验的贝叶斯自适应设计评估
  • 批准号:
    MR/N028287/1
  • 财政年份:
    2017
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Research Grant

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Studentship
Modern Techniques in Design and Analysis of Bayesian Adaptive Clinical Trials
贝叶斯适应性临床试验设计和分析的现代技术
  • 批准号:
    RGPIN-2020-04115
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Discovery Grants Program - Individual
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
  • 批准号:
    22K12276
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive Bayesian Models for Entity Resolution with Heterogeneous Data
用于异构数据实体解析的自适应贝叶斯模型
  • 批准号:
    2310222
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Adaptive Bayesian Models for Entity Resolution with Heterogeneous Data
用于异构数据实体解析的自适应贝叶斯模型
  • 批准号:
    2051911
  • 财政年份:
    2021
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Modern Techniques in Design and Analysis of Bayesian Adaptive Clinical Trials
贝叶斯适应性临床试验设计和分析的现代技术
  • 批准号:
    RGPIN-2020-04115
  • 财政年份:
    2021
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Discovery Grants Program - Individual
Modern Techniques in Design and Analysis of Bayesian Adaptive Clinical Trials
贝叶斯适应性临床试验设计和分析的现代技术
  • 批准号:
    DGECR-2020-00331
  • 财政年份:
    2020
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Discovery Launch Supplement
Modern Techniques in Design and Analysis of Bayesian Adaptive Clinical Trials
贝叶斯适应性临床试验设计和分析的现代技术
  • 批准号:
    RGPIN-2020-04115
  • 财政年份:
    2020
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive development of medical technology assessment besed on Bayesian decision making
基于贝叶斯决策的医疗技术评估自适应发展
  • 批准号:
    18K11194
  • 财政年份:
    2018
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bayesian adaptive robust adjustment of multivariate geodetic measurement processeswith data gaps and nonstationary colored noise
具有数据间隙和非平稳有色噪声的多元大地测量过程的贝叶斯自适应鲁棒调整
  • 批准号:
    386369985
  • 财政年份:
    2018
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了