Spatially-resolved PKPD modelling for optimised treatment of central nervous system infection due to Mycobacterium tuberculosis
空间分辨 PKPD 模型可优化治疗结核分枝杆菌引起的中枢神经系统感染
基本信息
- 批准号:MR/P000665/1
- 负责人:
- 金额:$ 35.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Background and ContextTuberculosis (TB) is a bacterial infection that causes over a million deaths per year worldwide. TB treatment involves taking a complex cocktail of antibiotics for many months. Although TB infection usually occurs in the lung, other sites of the body can also be affected, such as the brain and spine. TB infection in the brain usually occurs in children and those who have a suppressed immune system. With currently available treatment, one in five patients with TB brain infections die, and over half of those who survive have significant permanent disabilities. One reason for this may be that antibiotics used to treat TB do not get to the areas of the brain where the bacteria are living and growing.Aims and ObjectivesThe aim of this research is to understand and describe the concentration of different antibiotics in the brain and spinal fluid compared to the blood. This information will be used along with measurements from previous studies where samples were obtained from human patients to build mathematical models. These models will describe how the concentrations of drugs change in different areas of the brain over time. This can be used to make computer simulations to find drug doses and combinations that will best treat TB infection in the brain. These doses and drug combinations can then be tested in clinical trials. Another problem is that TB from blood and spinal fluid samples grow very slowly (or may not grow at all) in the laboratory. This makes TB a difficult condition to diagnose. This project will also, therefore, investigate how TB can best be diagnosed and monitoring with new tests that have been developed and tested in TB lung infection.MethodsTB infection involves a complex interaction between the TB bacteria, the immune system, and antibiotic medicines. For this reason, the experiments to study TB treatments will necessarily use infected animals. The use of an in vivo model will allow for tissue samples to be collected that cannot be obtained regularly from human patients or synthesised in the lab (for example brain tissue). Animals will be infected with TB and receive drugs at different doses. A new scanning techniques will be used to show how much of each drug reaches the brain and highlight 'hot spots' (containing high concentrations of drug) and 'cold spots' (containing low drug concentrations). These scans will be compared to those showing where in the brain the TB bacteria are living and growing. Together, this information will be used to build mathematical models that describe the amount of drugs in different areas of the brain and in the spinal fluid over time. The models developed will allow us to make predictions about whether treatment would work under new conditions using computer simulations (for example if a higher dose or new combination is used) and identify the combination and doses of drugs that have the highest chance of effectively treatment the infection. Potential Applications and BenefitsThe findings of this work have the potential to directly improve the lives of people who suffer from TB brain infection by identifying treatments which are more effective. The findings from the project will provide evidence to plan clinical trials of new and existing treatments, and assist national and international organisations that publish guidelines and recommendations on which drugs and doses doctors should use to treat TB. The work will also develop new methods to study how well drugs reach their site of action using of state-of-the-art scans and mathematical models. As well as giving information about the best treatments for TB these methods may be used to provide information on how to best treat many other diseases affecting the brain and infections elsewhere in the body, such as epilepsy, stroke or cancer.
背景和内容结核病(TB)是一种细菌感染,每年在全世界造成超过100万人死亡。结核病治疗包括服用复杂的抗生素鸡尾酒数月。虽然结核病感染通常发生在肺部,但身体的其他部位也会受到影响,如大脑和脊柱。大脑中的结核感染通常发生在儿童和免疫系统受到抑制的人中。根据目前可用的治疗方法,五分之一的结核病脑感染患者死亡,超过一半的幸存者有严重的永久性残疾。其中一个原因可能是用于治疗结核病的抗生素不能到达细菌生存和生长的大脑区域。目的和目标本研究的目的是了解和描述不同抗生素在大脑和脊髓液中的浓度与血液相比。该信息将与先前研究的测量值一起沿着使用,其中从人类患者中获得样本以构建数学模型。这些模型将描述药物浓度如何随着时间的推移在大脑的不同区域发生变化。这可以用来进行计算机模拟,以找到最佳治疗大脑结核感染的药物剂量和组合。然后可以在临床试验中测试这些剂量和药物组合。另一个问题是,血液和脊髓液样本中的结核病在实验室中生长非常缓慢(或可能根本不生长)。这使得结核病成为一种难以诊断的疾病。因此,该项目还将研究如何最好地诊断结核病和监测与新的测试,已开发和测试在结核病肺部infection.MethodsTB感染涉及结核菌,免疫系统和抗生素药物之间的复杂的相互作用。因此,研究结核病治疗的实验必须使用受感染的动物。体内模型的使用将允许收集不能从人类患者定期获得或在实验室中合成的组织样品(例如脑组织)。动物将感染结核病并接受不同剂量的药物。一种新的扫描技术将被用来显示每种药物到达大脑的量,并突出显示“热点”(含有高浓度的药物)和“冷点”(含有低浓度的药物)。这些扫描将与显示结核菌在大脑中生存和生长的位置的扫描进行比较。总之,这些信息将用于建立数学模型,描述随着时间的推移,大脑不同区域和脊髓液中的药物量。开发的模型将使我们能够使用计算机模拟来预测治疗是否会在新的条件下起作用(例如,如果使用更高的剂量或新的组合),并确定最有可能有效治疗感染的药物组合和剂量。潜在的应用和益处这项工作的发现有可能通过确定更有效的治疗方法来直接改善结核病脑感染患者的生活。该项目的研究结果将为规划新的和现有的治疗方法的临床试验提供证据,并协助国家和国际组织发布关于医生应使用哪些药物和剂量治疗结核病的指南和建议。这项工作还将开发新的方法来研究药物如何使用最先进的扫描和数学模型到达其作用部位。除了提供有关结核病最佳治疗方法的信息外,这些方法还可用于提供有关如何最好地治疗影响大脑和身体其他部位感染的许多其他疾病的信息,如癫痫、中风或癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jodi Lestner其他文献
Jodi Lestner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
- 批准号:
530760073 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Major Research Instrumentation
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
- 批准号:
23K26612 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Tiny Drops of Acid: Microwave Spectroscopy and Isomer-resolved IR Spectroscopy of Hydrohalic Acid-Water Clusters
职业:微小的酸滴:氢卤酸-水簇的微波光谱和异构体分辨红外光谱
- 批准号:
2340303 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Continuing Grant
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
- 批准号:
LE240100073 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
NSF Convergence Accelerator Track K: Spatially Resolved Solutions for Field to Regional Irrigation Water Management to Promote Equitable Sharing of Limited Water Resources
NSF 融合加速器轨道 K:田间到区域灌溉用水管理的空间解决方案,以促进有限水资源的公平共享
- 批准号:
2344487 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
GLIOMATCH: The malignant Glioma immuno-oncology matchmaker: towards data-driven precision medicine using spatially resolved radio-multiomics
GLIOMATCH:恶性胶质瘤免疫肿瘤学媒人:利用空间分辨的放射多组学实现数据驱动的精准医学
- 批准号:
10113516 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
EU-Funded
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
- 批准号:
EP/Y032659/1 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Research Grant
Solar energy materials in action: real-time molecular movies of pyroelectric switching by time-resolved X-ray diffraction
太阳能材料的实际应用:通过时间分辨 X 射线衍射拍摄热释电开关的实时分子电影
- 批准号:
2901373 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Studentship
Unraveling exciton dynamics for valleytronics applications with Time-resolved ARPES
利用时间分辨 ARPES 揭示谷电子学应用的激子动力学
- 批准号:
24K00561 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)