Dynamic mechanisms of FGFR activation in cancer by kinase mutations

激酶突变在癌症中激活 FGFR 的动态机制

基本信息

  • 批准号:
    MR/P000355/1
  • 负责人:
  • 金额:
    $ 54.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The way in which cells divide, proliferate and, in turn, die and become 'recycled' must be very carefully regulated in a highly programmed manner. Both development and maturation, as well as normal functioning of the adult organism, need to follow well-defined paths, and responses to environmental influences such as temperature, availability of food etc. must occur in a predictable manner. These responses require very fine control of complex cellular processes at the level of individual molecules. When this fine control breaks down, diseases such as cancer, degenerative disorders (e.g. Alzheimer's disease) and inflammatory conditions can result. Understanding these cellular and molecular processes in detail is important both to understand normal growth and development, and to provide us with insights into how serious diseases can be treated.Fibroblast growth factors (FGFs) are protein 'hormones' produced by certain cells to stimulate the growth of other cells involved in important processes such as the development of an embryo, the growth of new blood vessels and the repair and healing of wounds. FGF molecules bind to the outer parts of FGF receptors (FGFRs), which are proteins that span across the cell's protective outer membrane, and cause FGFR molecules to pair up. The parts of the receptor proteins that are inside the cell, known as kinase domains, are then close enough to activate one another through addition of phosphate 'chemical labels' that induce a change in the shape of the kinase domains from an inactive to an active conformation, causing the kinase domains to activate other proteins in the cell in a 'signalling cascade' that tells the cell to start dividing and proliferating. In turn, this process results in the formation of new tissues. The role of FGFs and FGFRs in formation of new blood vessels is also significant in cancer, where tumour cells often artificially elevate FGFR signalling within and between themselves as a way of securing a supply of nutrients and oxygen for further growth. Starving cancers of their new blood supply by inhibiting FGFR signalling is a promising avenue for treatment, and drug companies are currently developing new medicines that inhibit the activity of FGFRs.Although we understand some of the mechanisms by which the kinase domain of FGFR is activated from static 'snapshots' of the protein by X-ray crystallography, we still lack knowledge of how the flexibility of the kinase protein contributes to this role. Most proteins are not rigid, but need to flex to change their shape, or parts of their shape, in subtle ways to allow them to perform their functions in the cell. We will use an innovative combination of experimental methods including nuclear magnetic resonance spectroscopy (NMR), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), together with advanced computational methods, to understand the role of flexibility of the protein in the transition between inactive and active conformations. NMR is a particularly powerful method for investigating flexibility in protein function at the level of individual atoms or groups of atoms, and here we will combine experimental information from NMR with cutting-edge computational modelling of kinase motion to describe these movements in much more detail than has been previously achieved.By understanding the protein motions that govern FGFR kinase activity, we can understand better how FGFRs function in normal tissues and how they can malfunction in certain diseases such as cancers and developmental disorders. For example, mutated forms of FGFRs are found in many cancers. These contain amino acid changes that short-circuit the normal activation process and result in a kinase that is permanently switched 'on'. Our work will lead to enhanced understanding of how to design drugs that specifically inhibit these mutant forms of FGFR, leading ultimately to better treatments for cancers and developmental disorders.
细胞分裂、增殖、死亡和“循环”的方式必须以高度程序化的方式进行非常仔细的调节。无论是发育和成熟,还是成年生物体的正常功能,都需要遵循明确的路径,并且对环境影响(如温度、食物的可获得性等)的反应必须以可预测的方式发生。这些反应需要在单个分子水平上对复杂的细胞过程进行非常精细的控制。当这种良好的控制被破坏时,就会导致癌症、退行性疾病(如阿尔茨海默病)和炎症等疾病。详细了解这些细胞和分子过程对于理解正常生长和发育以及为我们提供如何治疗严重疾病的见解都很重要。成纤维细胞生长因子(FGFs)是由某些细胞产生的蛋白质“激素”,用于刺激参与重要过程的其他细胞的生长,如胚胎的发育、新血管的生长以及伤口的修复和愈合。FGF分子与FGF受体(FGFR)的外部部分结合,FGFR是跨越细胞保护外膜的蛋白质,并导致FGFR分子配对。细胞内的受体蛋白部分被称为激酶结构域,它们之间的距离足够近,可以通过添加磷酸盐“化学标签”来相互激活,这些“化学标签”会诱导激酶结构域的形状发生变化,从不活跃的构象变为活跃的构象,从而导致激酶结构域激活细胞内的其他蛋白质,形成“信号级联”,告诉细胞开始分裂和增殖。反过来,这个过程导致新组织的形成。FGFs和FGFR在新血管形成中的作用在癌症中也很重要,在癌症中,肿瘤细胞经常人为地提高它们内部和之间的FGFR信号,作为确保进一步生长所需营养和氧气供应的一种方式。通过抑制FGFR信号来阻断癌症的新血液供应是一种很有前景的治疗方法,制药公司目前正在开发抑制FGFR活性的新药。尽管我们通过x射线晶体学了解了FGFR的激酶结构域被激活的一些机制,但我们仍然缺乏激酶蛋白的灵活性如何促进这一作用的知识。大多数蛋白质不是刚性的,而是需要弯曲来改变它们的形状或部分形状,以微妙的方式使它们能够在细胞中发挥作用。我们将使用一种创新的实验方法组合,包括核磁共振波谱(NMR)、表面等离子体共振(SPR)和等温滴定量热法(ITC),以及先进的计算方法,来了解蛋白质在非活性构象和活性构象之间转变的灵活性。核磁共振是在单个原子或原子团水平上研究蛋白质功能灵活性的一种特别强大的方法,在这里,我们将把核磁共振的实验信息与激酶运动的尖端计算模型相结合,以比以前实现的更详细地描述这些运动。通过了解控制FGFR激酶活性的蛋白质运动,我们可以更好地了解FGFR如何在正常组织中发挥作用,以及它们如何在某些疾病(如癌症和发育障碍)中发生故障。例如,在许多癌症中都发现了突变形式的fgfr。它们包含的氨基酸变化会使正常的激活过程短路,导致激酶永久“开启”。我们的工作将有助于更好地理解如何设计特异性抑制FGFR突变形式的药物,最终导致更好地治疗癌症和发育障碍。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.
  • DOI:
    10.1007/s10858-018-0182-5
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Teixeira JMC;Skinner SP;Arbesú M;Breeze AL;Pons M
  • 通讯作者:
    Pons M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Breeze其他文献

Alexander Breeze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Breeze', 18)}}的其他基金

Structures of full-length FGFR cancer fusions and disease mutants
全长 FGFR 癌症融合体和疾病突变体的结构
  • 批准号:
    MR/W000369/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
The chaperone cycle of fibroblast growth factor receptor kinases in molecular detail
成纤维细胞生长因子受体激酶的分子伴侣循环的分子细节
  • 批准号:
    BB/W008017/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
  • 批准号:
    DP240101536
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Discovery Projects
Noise-reduction mechanisms in jet engines: chevrons are the answer
喷气发动机的降噪机制:人字形就是答案
  • 批准号:
    DE240100933
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Discovery Early Career Researcher Award
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
  • 批准号:
    MR/X008827/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
  • 批准号:
    MR/X022080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
  • 批准号:
    MR/X033287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Fellowship
Mechanisms underlying homeotic function across developmental transitions
发育转变过程中同源异型功能的潜在机制
  • 批准号:
    BB/Y006860/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Fellowship
Neuronal mechanisms for social information processing.
社会信息处理的神经机制。
  • 批准号:
    BB/Z514780/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了