Inflammatory therapeutics and the role of the circadian clock

炎症治疗和生物钟的作用

基本信息

  • 批准号:
    MR/P023576/2
  • 负责人:
  • 金额:
    $ 221.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Chronic inflammation is highly prevalent in human disease. Inflammatory signals exert extensive effects on the cellular circadian clockwork, so that up to five times as many genes show a circadian oscillation in inflamed tissue than in healthy states. This occurs because inflammation profoundly re-wires circadian coupling within affected cells. Overall, the circadian clock controls up to 25% of metabolic pathways in diverse organ systems, acting to anticipate predictable changes in the environment for example sleep/wake cycles with attendant changes from fed to fasted state. We propose that an initial adaptive response to an acute inflammatory challenge requires major changes in bioenergetic demands, which is regulated by the circadian clock, mediated by cross-talk between core clock components, regulators of energy metabolism, and inflammatory signals (eg the glucocorticoid receptor; GR). In chronic inflammation this response becomes maladaptive and imposes a bioenergetic cost, with consequences for inflammatory resolution and organismal energy metabolism. Critically, it will also modify the response to therapeutic intervention.We will address this core hypothesis in four interlinked aims.Aim 1 will define the impact of inflammation on the function of the core clock components Cryptochrome (CRY) and REVERB; and their interactions with GR. The GR binds to both CRY and REVERB, and thereby regulates both the core circadian clock phase, and also serves as the major endogenous regulator of inflammatory signaling, and energy metabolism. We test this using vital stage microscopy, allowing analysis of trafficking and molecular interaction, at the single cell-level. Molecular interactions between GR and both REVERB and CRY will be pursued using fluorescence cross correlation spectroscopy (FCCS), and FRET. From this, we will define where in the cell the interactions take place, how circadian phase regulates the molecular function of the GR, and how inflammatory signaling impacts on the GR:circadian clock interface. Aim 2 will define how inflammation re-wires the rhythmic repertoire of metabolites and gene expression within tissues. We will use computational approaches to build predictive models, which we will directly test using genetic and pharmacological intervention. As an example of the approach, we have recently discovered that ceramides, potent regulators of insulin action, acquire a strong circadian oscillation in patients with active rheumatoid arthritis. Aim 3 will investigate hepatic responses to chronic inflammation in lung or limb joint. We will reveal humoral signals responsible for triggering hepatic circadian change. By combining metabolomic and transcriptomic models, we aim to build functional networks, capable of explaining the emergence of newly rhythmic processes under the inflamed state. The physiological role of these adaptations will be tested by targeting emergent hepatic responses with genetic approaches (AAV6 delivered CRISPR, and/or shRNA, and albumincre targeted recombination).Aim 4 will investigate the translational potential of embedding circadian logic into anti-inflammatory drug treatment in order to optimize efficacy, and simultaneously minimize off-target effects. We will use the gene expression data acquired in Aim 2 (inflammatory focus), and Aim 3 (liver) to inform the design of therapeutic trials of altered timing of drug administration. As a starting point, we will employ glucocorticoids, capitalizing from our recent discovery of tight circadian regulation of GR function, but we anticipate following up other promising drug targets that emerge. Other environmental challenges such as altered feeding protocols or lighting conditions to shift the clock phase will also be tested.Thus, we will identify how inflammation re-wires the clock, and the implications therein for inflammatory persistence, metabolic consequences and drug response.
慢性炎症在人类疾病中非常普遍。炎症信号对细胞的昼夜节律产生广泛的影响,因此在炎症组织中显示昼夜节律振荡的基因是健康状态下的五倍。发生这种情况是因为炎症深刻地重新布线受影响细胞内的昼夜节律耦合。总的来说,生物钟控制着不同器官系统中高达25%的代谢途径,用于预测环境中可预测的变化,例如睡眠/觉醒周期以及从进食到禁食状态的伴随变化。我们认为,对急性炎症挑战的初始适应性反应需要生物能量需求的重大变化,这是由昼夜节律钟调节的,由核心时钟组件,能量代谢调节器和炎症信号(如糖皮质激素受体; GR)之间的串扰介导。在慢性炎症中,这种反应变得适应不良,并产生生物能量成本,从而导致炎症消退和生物体能量代谢。关键的是,它也将改变对治疗干预的反应。我们将在四个相互关联的目标中解决这个核心假设。目标1将定义炎症对核心时钟组件隐色素(CRY)和REVERB功能的影响; GR与CRY和REVERB结合,从而调节核心生物钟相位,并且还充当炎症信号传导和能量代谢的主要内源性调节剂。我们使用生命阶段显微镜进行测试,允许在单细胞水平上分析贩运和分子相互作用。GR与REVERB和CRY之间的分子相互作用将使用荧光交叉相关光谱(FCCS)和FRET进行研究。由此,我们将确定在细胞中发生相互作用的位置,昼夜节律如何调节GR的分子功能,以及炎症信号如何影响GR:昼夜节律钟界面。目标2将定义炎症如何重新连接组织内代谢产物和基因表达的节律库。我们将使用计算方法来建立预测模型,我们将使用遗传和药理干预直接测试。作为该方法的一个例子,我们最近发现神经酰胺,胰岛素作用的有效调节剂,在活动性类风湿关节炎患者中获得强烈的昼夜节律振荡。目的3探讨肝脏对慢性炎症反应的影响.我们将揭示负责触发肝脏昼夜节律变化的体液信号。通过结合代谢组学和转录组学模型,我们的目标是建立功能网络,能够解释发炎状态下新的节奏过程的出现。这些适应的生理作用将通过用遗传方法(AAV 6递送的CRISPR和/或shRNA和白蛋白增加靶向重组)靶向紧急肝脏应答来测试。目的4将研究将昼夜节律逻辑嵌入抗炎药物治疗的转化潜力,以优化疗效,同时最小化脱靶效应。我们将使用Aim 2(炎症病灶)和Aim 3(肝脏)中获得的基因表达数据来设计改变给药时间的治疗试验。作为一个起点,我们将使用糖皮质激素,利用我们最近发现的GR功能的昼夜节律调节,但我们预计后续出现的其他有前途的药物靶点。其他环境挑战,如改变喂养方案或照明条件,以改变时钟相位也将被测试。因此,我们将确定炎症如何重新连接时钟,以及炎症持续性,代谢后果和药物反应的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The associations of chronotype and shift work with rheumatoid arthritis
时间型和轮班工作与类风湿性关节炎的关系
  • DOI:
    10.1101/2022.07.07.22277352
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Butler T
  • 通讯作者:
    Butler T
Nasogastric feeding on intensive care unit: does it vary around the clock?
重症监护病房的鼻胃喂养:全天候变化吗?
A scoping review of the evidence for the impact of pharmacological and non-pharmacological interventions on shift work related sleep disturbance in an occupational setting
对药物和非药物干预措施对职业环境中轮班工作相关睡眠障碍影响的证据进行范围审查
  • DOI:
    10.12688/wellcomeopenres.17002.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conway-Jones R
  • 通讯作者:
    Conway-Jones R
DICER1 mutation and pituitary prolactinoma.
Chronotype in Patients With Immune-Mediated Inflammatory Disease: A Systematic Review.
免疫介导的炎症性疾病患者的表型:系统评价。
  • DOI:
    10.1177/07487304221131114
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Butler, Thomas D.;Ali, Aala Mohammed;Gibbs, Julie E.;McLaughlin, John T.
  • 通讯作者:
    McLaughlin, John T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ray其他文献

Pharmacological targeting of BMAL1 modulates circadian and immune pathways
BMAL1 的药理靶向调节昼夜节律和免疫途径
  • DOI:
    10.1038/s41589-025-01863-x
  • 发表时间:
    2025-03-25
  • 期刊:
  • 影响因子:
    13.700
  • 作者:
    Hua Pu;Laura C. Bailey;Ludwig G. Bauer;Maria Voronkov;Matthew Baxter;Kilian V. M. Huber;Sepideh Khorasanizadeh;David Ray;Fraydoon Rastinejad
  • 通讯作者:
    Fraydoon Rastinejad
Novel protein targets for organophosphorus compounds.
有机磷化合物的新型蛋白质靶标。
  • DOI:
    10.1016/s0009-2797(99)00064-2
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Paul Richards;Martin Johnson;David Ray;Colin Walker
  • 通讯作者:
    Colin Walker
P-386 Effect of Prior Selinexor Exposure on Clinical Outcomes of Chimeric Antigen Receptor T-cell (CAR-T) Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): A Real-World Descriptive Analysis
  • DOI:
    10.1016/s2152-2650(24)02288-2
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bruno Costa;Jack Khouri;Tomer Mark;Stephen Ijioma;David Ray;George Dranitsaris;Norah Sadek;Danai Dima;Erin Moshier;Tarek Mouhieddine;Tianxiang Sheng;Adriana Rossi
  • 通讯作者:
    Adriana Rossi
P-408 Survival Analysis of Selinexor-Exposed Relapsed/Refractory Multiple Myeloma (RRMM) Treated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: A Real-World Exploratory Analysis
  • DOI:
    10.1016/s2152-2650(24)02310-3
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Danai Dima;Adriana Rossi;Bruno Costa;Tomer Mark;Stephen Ijioma;David Ray;George Dranitsaris;Norah Sadek;Tianxiang Sheng;Erin Moshier;Tarek Mouhieddine;Jack Khouri
  • 通讯作者:
    Jack Khouri
839 - Is there a Window of Opportunity to effect Positive Health Behaviour Prior to Surgery? A two centre open label Randomised Controlled Feasibility Trial of a Preoperative Package of Care for Osteoarthritis, consisting of Weight loss, Orthotics, Rehabilitation, Topical and Oral analgesia (OPPORTUNITY)
  • DOI:
    10.1016/j.joca.2024.02.853
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hamish Simpson;Nicholas Clement;Sharon Simpson;Hemant Pandit;Susie Smillie;Anthony Leeds;Philip Conaghan;Sarah Kingsbury;David Hamilton;Peter Craig;David Ray;Catriona Keerie;Elaine Kinsella;Anna Bell-Higgs;Arlene McGarty;Christine Beadle;Colin Howie;John Norrie
  • 通讯作者:
    John Norrie

David Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ray', 18)}}的其他基金

Circadian iron metabolism, implications for health, and response to inflammatory disease.
昼夜铁代谢、对健康的影响以及对炎症性疾病的反应。
  • 批准号:
    MR/W019000/1
  • 财政年份:
    2022
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
BUD23 drives system-wide adaptations to energy metabolism
BUD23 推动全系统对能量代谢的适应
  • 批准号:
    MR/V034049/1
  • 财政年份:
    2021
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
RAPID: Collaborative Research: Immunological adaptations in bats to moderate the effect of coronavirus infection
RAPID:合作研究:蝙蝠的免疫适应可减轻冠状病毒感染的影响
  • 批准号:
    2032006
  • 财政年份:
    2020
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Standard Grant
Conference: FASEB Science Research Conference on Mobile DNA: 25 Years of Discussion and Research, June 23-29, 2019, Palm Springs, CA
会议:FASEB 移动 DNA 科学研究会议:25 年的讨论和研究,2019 年 6 月 23 日至 29 日,加利福尼亚州棕榈泉
  • 批准号:
    1915810
  • 财政年份:
    2019
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Collaborative Research: Genomics of exceptions to scaling of longevity to body size
RoL:FELS:EAGER:合作研究:长寿与体型比例的例外基因组学
  • 批准号:
    1838283
  • 财政年份:
    2018
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Standard Grant
Exploitation of metadherin as a regulator of hepatic energy metabolism
利用麦粘蛋白作为肝脏能量代谢的调节剂
  • 批准号:
    MR/P011853/2
  • 财政年份:
    2018
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
Exploitation of metadherin as a regulator of hepatic energy metabolism
利用麦粘蛋白作为肝脏能量代谢的调节剂
  • 批准号:
    MR/P011853/1
  • 财政年份:
    2017
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
Inflammatory therapeutics and the role of the circadian clock
炎症治疗和生物钟的作用
  • 批准号:
    MR/P023576/1
  • 财政年份:
    2017
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
Advancing therapeutics by exploiting single cell functional analysis
利用单细胞功能分析推进治疗
  • 批准号:
    MR/M008908/1
  • 财政年份:
    2015
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Research Grant
Collaborative Research: SG: piRNA Dynamics in the Absence of Active Transposable Elements
合作研究:SG:缺乏活性转座元件时的 piRNA 动力学
  • 批准号:
    1355176
  • 财政年份:
    2014
  • 资助金额:
    $ 221.96万
  • 项目类别:
    Standard Grant

相似国自然基金

慢病毒转染嵌合体HCN1+4拼接基因构建生物起搏细胞
  • 批准号:
    81070139
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
  • 批准号:
    10638866
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Fibroblast-mediated inflammatory resolution of rheumatoid arthritis
成纤维细胞介导的类风湿性关节炎炎症消退
  • 批准号:
    10604629
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
  • 批准号:
    10755779
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
  • 批准号:
    10664118
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Molecular regulation of immunoproteasome assembly in inflammatory diseases
炎症性疾病中免疫蛋白酶体组装的分子调控
  • 批准号:
    10637422
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Identification and optimization of verapamil as a novel neuroprotective and anti-inflammatory agent for reducing long-term neurological morbidities following organophosphate-induced status epilepticus
维拉帕米作为新型神经保护和抗炎剂的鉴定和优化,用于减少有机磷引起的癫痫持续状态后的长期神经系统发病率
  • 批准号:
    10727765
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Reovirus induction of host inflammatory responses
呼肠孤病毒诱导宿主炎症反应
  • 批准号:
    10726153
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Identifying Inflammatory Mediators of Clonal Hematopoiesis
识别克隆造血的炎症介质
  • 批准号:
    10743540
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Intestinal Stem Cell Metabolism in Inflammatory Bowel Disease Mucosal Healing
炎症性肠病粘膜愈合中的肠道干细胞代谢
  • 批准号:
    10606371
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
Outer Membrane Vesicles in Shiga Toxin-Mediated Inflammatory and Thrombotic Responses Leading to Systemic Disease
志贺毒素介导的导致全身性疾病的炎症和血栓反应中的外膜囊泡
  • 批准号:
    10668016
  • 财政年份:
    2023
  • 资助金额:
    $ 221.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了