ALGORITHMS FOR PIGMENTED LESION SCREENING AND DETECTION

色素病变筛查和检测算法

基本信息

  • 批准号:
    6172283
  • 负责人:
  • 金额:
    $ 40.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-08-01 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

A significant number of malignant melanomas, especially early melanomas curable by excision, are not diagnosed correctly in the clinic. Available teaching materials do not allow recognition of the critical features of melanoma, especially for early lesions. The Phase I digital image analysis effort has resulted in a set of clinical rules that may permit higher accuracy in diagnosis of early melanomas. Digital image analysis will be continued in Phase II to improve diagnostic accuracy. The Melanoma Detection CD-ROM will be developed for advanced medical students and primary care physicians. The tutorial will be tested and modified by both target groups prior to general release. The CD-ROM will incorporate some new computer instruction techniques and an atlas with descriptor and thumbnail image indexing capability, to allow "best- match" lookup. This CD-ROM will utilize results available only recently measuring diagnostic performance based on image features, successive pairs in discrimination, and diagnosis of atypical melanomas. The success of the module will be measured using medical student diagnostic performance with slides and primary care clinical outcomes. The semi- automatic classification system from Phase I will be modified and tested on the larger set of images available in Phase II using ROC curves. PROPOSED COMMERCIAL APPLICATIONS: Specific features of melanoma will be presented quantitatively to medical students and primary care physicians in a CD-ROM tutorial. No similar product exists, and sales are expected to be significant. The semi- automated diagnostic system will have add-on potential for digital dermatoscopic systems.
相当数量的恶性黑色素瘤,特别是可通过切除治愈的早期黑色素瘤,在临床上不能正确诊断。现有的教学材料不允许识别黑色素瘤的关键特征,特别是对于早期病变。第一阶段的数字图像分析工作已经产生了一套临床规则,可以提高早期黑色素瘤诊断的准确性。 数字图像分析将在第二阶段继续进行,以提高诊断准确性。黑色素瘤检测CD-ROM将为高级医学生和初级保健医生开发。本教程将测试和修改之前,两个目标群体的一般版本。该光盘将包含一些新的计算机指令技术和一个具有描述符和缩略图索引功能的地图集,以便进行“最佳匹配”查找。该光盘将利用最近才获得的结果,根据图像特征、连续对鉴别和非典型黑色素瘤的诊断来测量诊断性能。 该模块的成功将使用医学生的诊断性能与幻灯片和初级保健临床结果来衡量。 第一阶段的半自动分类系统将进行修改,并使用ROC曲线在第二阶段可用的更大图像集上进行测试。拟议的商业应用:黑色素瘤的具体特征将在光盘教程中定量地介绍给医学生和初级保健医生。没有类似的产品存在,销售预计将是显着的。该半自动诊断系统将具有附加的数字皮肤镜系统的潜力。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic dirt trail analysis in dermoscopy images.
Automatic detection of blue-white veil and related structures in dermoscopy images.
  • DOI:
    10.1016/j.compmedimag.2008.08.003
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Celebi, M. Emre;Iyatomi, Hitoshi;Stoecker, William V.;Moss, Randy H.;Rabinovitz, Harold S.;Argenziano, Giuseppe;Soyer, H. Peter
  • 通讯作者:
    Soyer, H. Peter
Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma.
  • DOI:
    10.1016/j.compmedimag.2010.09.009
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Dalal, Ankur;Moss, Randy H.;Stanley, R. Joe;Stoecker, William V.;Gupta, Kapil;Calcara, David A.;Xu, Jin;Shrestha, Bijaya;Drugge, Rhett;Malters, Joseph M.;Perry, Lindall A.
  • 通讯作者:
    Perry, Lindall A.
Detection of granularity in dermoscopy images of malignant melanoma using color and texture features.
  • DOI:
    10.1016/j.compmedimag.2010.09.005
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Stoecker, William V.;Wronkiewiecz, Mark;Chowdhury, Raeed;Stanley, R. Joe;Xu, Jin;Bangert, Austin;Shrestha, Bijaya;Calcara, David A.;Rabinovitz, Harold S.;Oliviero, Margaret;Ahmed, Fatimah;Perry, Lindall A.;Drugge, Rhett
  • 通讯作者:
    Drugge, Rhett
Border detection in dermoscopy images using statistical region merging.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM V STOECKER其他文献

WILLIAM V STOECKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM V STOECKER', 18)}}的其他基金

Automatic Detection of Critical Dermoscopy Features for Basal Cell Carcinoma
自动检测基底细胞癌的关键皮肤镜特征
  • 批准号:
    8005912
  • 财政年份:
    2010
  • 资助金额:
    $ 40.19万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    7913487
  • 财政年份:
    2008
  • 资助金额:
    $ 40.19万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    7405490
  • 财政年份:
    2008
  • 资助金额:
    $ 40.19万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    8101097
  • 财政年份:
    2008
  • 资助金额:
    $ 40.19万
  • 项目类别:
Automatic Detection of Critical Dermoscopy Features for Melanoma Diagnosis
自动检测黑色素瘤诊断的关键皮肤镜特征
  • 批准号:
    7284886
  • 财政年份:
    2003
  • 资助金额:
    $ 40.19万
  • 项目类别:
Identification of Critical Dermoscopic Features
关键皮肤镜特征的识别
  • 批准号:
    6652363
  • 财政年份:
    2003
  • 资助金额:
    $ 40.19万
  • 项目类别:
Automatic Detection of Critical Dermoscopy Features for Melanoma Diagnosis
自动检测黑色素瘤诊断的关键皮肤镜特征
  • 批准号:
    7163231
  • 财政年份:
    2003
  • 资助金额:
    $ 40.19万
  • 项目类别:
ALGORITHMS FOR PIGMENTED LESION SCREENING AND DETECTION
色素病变筛查和检测算法
  • 批准号:
    6015544
  • 财政年份:
    1993
  • 资助金额:
    $ 40.19万
  • 项目类别:

相似海外基金

Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 40.19万
  • 项目类别:
Natural language processing and medical imaging analysis for multi-modality computer assisted diagnosis of ophthalmic diseases
自然语言处理和医学影像分析用于眼科疾病多模态计算机辅助诊断
  • 批准号:
    10881194
  • 财政年份:
    2023
  • 资助金额:
    $ 40.19万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10317682
  • 财政年份:
    2021
  • 资助金额:
    $ 40.19万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10496557
  • 财政年份:
    2021
  • 资助金额:
    $ 40.19万
  • 项目类别:
NSF/FDA SIR: A Modeling Tool for Assessment of Radiological Workflow Prioritization Based on Computer-assisted Diagnosis
NSF/FDA SIR:基于计算机辅助诊断的放射工作流程优先级评估建模工具
  • 批准号:
    1935809
  • 财政年份:
    2020
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Standard Grant
Computer Assisted Diagnosis for Predicting Lung Cancer by Using Large Scale Low-Dose CT Database
利用大规模低剂量 CT 数据库预测肺癌的计算机辅助诊断
  • 批准号:
    19K08155
  • 财政年份:
    2019
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer-assisted diagnosis of thoracic diseases using a large scale 3D-CT image database
利用大规模3D-CT图像数据库开发胸部疾病计算机辅助诊断
  • 批准号:
    15K09919
  • 财政年份:
    2015
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 40.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了