Automatic Detection of Critical Dermoscopy Features for Melanoma Diagnosis

自动检测黑色素瘤诊断的关键皮肤镜特征

基本信息

  • 批准号:
    7284886
  • 负责人:
  • 金额:
    $ 49.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-23 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Malignant melanoma, with an estimated growth in incidence of about 6% per year for decades, causes considerable loss of life. Yet melanoma can be easily cured if detected early. Digital dermoscopy has shown promise for more accurate detection, particularly at an early stage. Recent conferences have highlighted a general agreement on definition of dermoscopic features and moderate agreement on the most useful structural features. Automatic detection of these specific structures that are critical for early diagnosis and are used in various dermoscopic diagnostic algorithms would be desirable. Yet little work has been published on automatic detection of any specific dermoscopic structures. Although specific colors figure prominently in the definition of the most critical dermoscopic structures, little work has been done on finding the specific regions or region combinations in the color space where colors are located, particularly with reference to the surrounding skin. The work in Phase I and after Phase I successfully segmented the border within 5% of the range of the dermatologists' borders, found several highly accurate dermoscopy features, and brought mean diagnostic accuracy on difficult early lesions to a high level. This proposal seeks to develop a digital dermosocopy system by 1) comparing classifiers 2) testing border accuracy and modifying segmentation if needed 3) developing an algorithm that uses a three-dimensional representation of a probability density function to specify single and paired melanoma colors via cluster methods and fuzzy logic techniques 4) identifying critical structural features including brown globules, abrupt border cutoff, granularity, regression, and pigment asymmetry with high accuracy 5) developing a clinical interface for acquisition of images within the clinic 6) testing the new algorithms in six dermatology clinics including two pigmented lesion clinics with both EpiLight and DermLite II Pro dermoscopy images taken in the clinic. Key features of the research include dermatopathology confirmation of specific structures and the use of relative color analysis. If successful, software will be marketed to the growing number of dermatologists with digital dermoscopy capability. The commercial software package will be ready for marketing as a diagnostic adjunct for digital camera dermoscopy attachments. Malignant melanoma, with an estimated growth in incidence of about 6% per year for decades, causes considerable loss of life. Melanoma can be easily cured if detected early, and this project seeks to develop a digital dermoscopy device that can detect very early melanomas. The project goal is to develop inexpensive melanoma detection software and test it in multiple dermatology clinics.
描述(由申请人提供):恶性黑色素瘤,几十年来估计发病率每年增长约6%,造成相当大的生命损失。然而,如果早期发现,黑色素瘤很容易治愈。数字皮肤镜已显示出更准确检测的前景,特别是在早期阶段。最近的会议强调了对皮肤镜特征的定义的普遍一致性和对最有用的结构特征的适度一致性。自动检测对于早期诊断至关重要并且用于各种皮肤镜诊断算法的这些特定结构将是期望的。然而,很少有工作已发表的任何特定的皮肤镜结构的自动检测。虽然特定的颜色在最关键的皮肤镜结构的定义中占据突出地位,但是在颜色所处的颜色空间中找到特定区域或区域组合的工作很少,特别是参考周围皮肤。第一阶段和第一阶段之后的工作成功地分割了皮肤科医生边界范围的5%内的边界,发现了几个高度准确的皮肤镜特征,并将困难的早期病变的平均诊断准确性提高到了一个很高的水平。该提案寻求通过以下方式开发数字皮肤镜系统:1)比较分类器2)测试边界准确性并在需要时修改分割3)开发使用概率密度函数的三维表示的算法,以经由聚类方法和模糊逻辑技术指定单个和成对的黑素瘤颜色4)识别关键结构特征,包括棕色小球、突然边界截止、粒度,回归和色素不对称的高精度5)开发用于在诊所内采集图像的临床界面6)在六个皮肤科诊所中测试新算法,包括两个色素性病变诊所,使用在诊所拍摄的EpiLight和DermLite II Pro皮肤镜图像。该研究的主要特点包括特定结构的皮肤病理学确认和相对颜色分析的使用。如果成功,该软件将销售给越来越多具有数字皮肤镜功能的皮肤科医生。商业软件包将作为数码相机皮肤镜附件的诊断辅助工具准备上市。恶性黑色素瘤,几十年来估计发病率每年增长约6%,造成相当大的生命损失。黑色素瘤可以很容易地治愈,如果早期发现,这个项目旨在开发一个数字皮肤镜设备,可以检测非常早期的黑色素瘤。该项目的目标是开发廉价的黑色素瘤检测软件,并在多个皮肤科诊所进行测试。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Melanoma in situ in a private practice setting 2005 through 2009: location, lesion size, lack of concern.
  • DOI:
    10.1016/j.jaad.2011.11.949
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Stricklin, Sherea M.;Stoecker, William V.;Malters, Joseph M.;Drugge, Rhett;Oliviero, Margaret;Rabinovitz, Harold S.;Perry, Lindall A.
  • 通讯作者:
    Perry, Lindall A.
Detection of atypical texture features in early malignant melanoma.
Fuzzy logic techniques for blotch feature evaluation in dermoscopy images.
  • DOI:
    10.1016/j.compmedimag.2008.10.001
  • 发表时间:
    2009-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Khan, Azmath;Gupta, Kapil;Stanley, R. J.;Stoecker, William V.;Moss, Randy H.;Argenziano, Giuseppe;Soyer, H. Peter;Rabinovitz, Harold S.;Cognetta, Armand B.
  • 通讯作者:
    Cognetta, Armand B.
Fuzzy logic color detection: Blue areas in melanoma dermoscopy images.
  • DOI:
    10.1016/j.compmedimag.2014.03.007
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Lingala, Mounika;Stanley, R. Joe;Rader, Ryan K.;Hagerty, Jason;Rabinovitz, Harold S.;Oliviero, Margaret;Choudhry, Iqra;Stoecker, William V.
  • 通讯作者:
    Stoecker, William V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM V STOECKER其他文献

WILLIAM V STOECKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM V STOECKER', 18)}}的其他基金

Automatic Detection of Critical Dermoscopy Features for Basal Cell Carcinoma
自动检测基底细胞癌的关键皮肤镜特征
  • 批准号:
    8005912
  • 财政年份:
    2010
  • 资助金额:
    $ 49.44万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    7913487
  • 财政年份:
    2008
  • 资助金额:
    $ 49.44万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    7405490
  • 财政年份:
    2008
  • 资助金额:
    $ 49.44万
  • 项目类别:
Assay for Detection of Loxosceles Envenomation
斜索蛇毒的检测测定
  • 批准号:
    8101097
  • 财政年份:
    2008
  • 资助金额:
    $ 49.44万
  • 项目类别:
Identification of Critical Dermoscopic Features
关键皮肤镜特征的识别
  • 批准号:
    6652363
  • 财政年份:
    2003
  • 资助金额:
    $ 49.44万
  • 项目类别:
Automatic Detection of Critical Dermoscopy Features for Melanoma Diagnosis
自动检测黑色素瘤诊断的关键皮肤镜特征
  • 批准号:
    7163231
  • 财政年份:
    2003
  • 资助金额:
    $ 49.44万
  • 项目类别:
ALGORITHMS FOR PIGMENTED LESION SCREENING AND DETECTION
色素病变筛查和检测算法
  • 批准号:
    6172283
  • 财政年份:
    1993
  • 资助金额:
    $ 49.44万
  • 项目类别:
ALGORITHMS FOR PIGMENTED LESION SCREENING AND DETECTION
色素病变筛查和检测算法
  • 批准号:
    6015544
  • 财政年份:
    1993
  • 资助金额:
    $ 49.44万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了