MICA: InterdisciPlInary Collaboration for efficienT and effective Use of clinical images in big data health care RESearch: PICTURES

MICA:跨学科合作,在大数据医疗保健中高效、有效地使用临床图像 研究:图片

基本信息

  • 批准号:
    MR/S010351/1
  • 负责人:
  • 金额:
    $ 363.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Clinical imaging including X-rays, CT, MRI, ultrasound and nuclear medicine scans are core diagnostic technologies. These images can support many important areas of research to improve any or all of diagnosis, monitoring of disease progression and response to treatment. Currently most research using images is based on those collected specifically for a particular research project. The images are of "research" quality. That means that they are captured at high resolution using standardised procedures to reduce the variability of images. Research data collection is expensive so studies tend to be small, and the people who take part in research studies are different to those seen in normal clinical care. It is therefore often uncertain whether research findings can be translated to "real world" images or patients.Each year millions of clinical images are generated in Scotland through routine examinations at hospitals and stored in a huge database. The Scottish national imaging database currently has ~23 million different images collected since 2010. Access to these "real world" images would be extremely valuable for research, but there are a number of big challenges. Firstly, it is very important that all data is kept confidential. Secondly, imaging datasets are very large which it technically challenging. Thirdly, the software which manages these images is optimised for retrieval of images by NHS staff specifically for an individual patient's clinical care (e.g. return Mrs Jones' scan taken on the 28th of May 2016) rather than for research (e.g. return all the CT chest scans of smokers between age 55 and 65 where a contrast agent has been used). What will be delivered? This 5 year programme will enable secure access to routinely collected imaging data for research. Using the foundation blocks already in place from previous research grants, PICTURES will extend, scale and enhance innovative open source software to query a research copy of the Scottish National imaging database securely hosted by the University of Edinburgh and provide anonymised extracts of hundreds of thousands of images for research. PICTURES will also develop this software to query imaging data linked to genomic data securely hosted by the University of Dundee.There are 3 main areas of research required within the core programme: (1) Data science research for complex cohort building from real-world, messy data. (2) Engineering required for scaling and handling big data within a Safe Haven environment. (3) Cybersecurity research needed to ensure that the patient data is securely held and de-identified appropriately for research.PICTURES will support 2 major exemplar research projects to guide and shape the underpinning resources. Exemplar one will develop a method to detect lung nodules and coronary artery calcification using hundreds of thousands of CT chest scans provided by the core programme. It will also predict the risk of getting lung cancer based upon the presence of lung nodules and the risk of cardiovascular disease based upon the presence of coronary artery calcification. This exemplar will work in partnership with an industrial partner, Aidence, to validate and test the method directly in NHS clinical workstations within the course of the programme.Exemplar 2 will predict individual risk of dementia in people with diabetes using MRI brain scans, genetic data and medical records. The most important variables will be found. The predictive tool will be validated on the large image dataset provided by the core programme.Both of our exemplars will determine new information from routinely collected data that would otherwise have been ignored. Predicting and therefore treating diseases at an early stage improves patient outcomes and reduces the cost to the NHS.PICTURES is truly interdisciplinary requiring expertise in Radiomics, AI, Cybersecurity, Software Engineering, Data Science, Data Governance and Medicine.
包括X射线、CT、MRI、超声和核医学扫描在内的临床成像是核心诊断技术。这些图像可以支持许多重要的研究领域,以改善任何或所有诊断,监测疾病进展和治疗反应。目前,大多数使用图像的研究都是基于专门为特定研究项目收集的图像。这些图像具有“研究”质量。这意味着它们是使用标准化程序以高分辨率捕获的,以减少图像的可变性。研究数据收集是昂贵的,所以研究往往是小的,谁参加研究的人是不同的,在正常的临床护理。因此,研究结果是否能转化为“真实的世界”的图像或患者往往是不确定的。每年在苏格兰,通过医院的常规检查产生数百万张临床图像,并存储在一个巨大的数据库中。自2010年以来,苏格兰国家成像数据库目前收集了约2300万张不同的图像。获取这些“真实的世界”图像对研究来说是极其有价值的,但也存在一些重大挑战。首先,所有数据都必须保密。其次,成像数据集非常大,这在技术上具有挑战性。第三,管理这些图像的软件针对NHS工作人员检索图像进行了优化,特别是针对个别患者的临床护理(例如,返回Jones夫人在2016年5月28日拍摄的扫描),而不是用于研究(例如,返回所有年龄在55岁至65岁之间的吸烟者的CT胸部扫描,其中使用了造影剂)。将交付什么?这个为期5年的计划将使安全访问定期收集的成像数据用于研究。利用先前研究赠款的基础块,PICTURES将扩展,扩展和增强创新的开源软件,以查询由爱丁堡大学安全托管的苏格兰国家成像数据库的研究副本,并提供数十万张图像的匿名提取用于研究。PICTURES还将开发这款软件,用于查询与邓迪大学安全托管的基因组数据相关的成像数据。核心计划中需要研究的主要领域有3个:(1)从真实世界的杂乱数据中构建复杂队列的数据科学研究。(2)在安全港环境中扩展和处理大数据所需的工程。(3)需要进行网络安全研究,以确保患者数据的安全保存和适当的去识别研究。PICTURES将支持2个主要的示范研究项目,以指导和塑造基础资源。范例一将开发一种方法,利用核心方案提供的数十万次CT胸部扫描来检测肺结节和冠状动脉钙化。它还将根据肺结节的存在预测患肺癌的风险,并根据冠状动脉钙化的存在预测心血管疾病的风险。该范例将与工业合作伙伴Aidence合作,在项目过程中直接在NHS临床工作站验证和测试该方法。Exemplar 2将使用MRI脑部扫描,遗传数据和医疗记录预测糖尿病患者患痴呆症的个体风险。最重要的变量将被发现。预测工具将在核心计划提供的大型图像数据集上进行验证。我们的两个样本将从常规收集的数据中确定新的信息,否则这些信息将被忽略。在早期阶段预测并治疗疾病可以改善患者的预后,并降低NHS的成本。PICTURES是真正的跨学科研究,需要放射组学、人工智能、网络安全、软件工程、数据科学、数据治理和医学方面的专业知识。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monitoring indirect impact of COVID-19 pandemic on services for cardiovascular diseases in the UK.
监测 COVID-19 大流行对英国心血管疾病服务的间接影响。
  • DOI:
    10.1136/heartjnl-2020-317870
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ball S;Banerjee A;Berry C;Boyle JR;Bray B;Bradlow W;Chaudhry A;Crawley R;Danesh J;Denniston A;Falter F;Figueroa JD;Hall C;Hemingway H;Jefferson E;Johnson T;King G;Lee KK;McKean P;Mason S;Mills NL;Pearson E;Pirmohamed M;Poon MTC;Priedon R;Shah A;Sofat R;Sterne JAC;Strachan FE;Sudlow CLM;Szarka Z;Whiteley W;Wyatt M;CVD-COVID-UK Consortium
  • 通讯作者:
    CVD-COVID-UK Consortium
An overview of the National COVID-19 Chest Imaging Database: data quality and cohort analysis
国家 COVID-19 胸部影像数据库概述:数据质量和队列分析
  • DOI:
    10.1101/2021.03.02.21252444
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cushnan D
  • 通讯作者:
    Cushnan D
Towards nationally curated data archives for clinical radiology image analysis at scale: Learnings from national data collection in response to a pandemic.
  • DOI:
    10.1177/20552076211048654
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Cushnan D;Berka R;Bertolli O;Williams P;Schofield D;Joshi I;Favaro A;Halling-Brown M;Imreh G;Jefferson E;Sebire NJ;Reilly G;Rodrigues JCL;Robinson G;Copley S;Malik R;Bloomfield C;Gleeson F;Crotty M;Denton E;Dickson J;Leeming G;Hardwick HE;Baillie K;Openshaw PJ;Semple MG;Rubin C;Howlett A;Rockall AG;Bhayat A;Fascia D;Sudlow C;NCCID Collaborative;Jacob J
  • 通讯作者:
    Jacob J
A National Network of Safe Havens: Scottish Perspective.
  • DOI:
    10.2196/31684
  • 发表时间:
    2022-03-09
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Gao C;McGilchrist M;Mumtaz S;Hall C;Anderson LA;Zurowski J;Gordon S;Lumsden J;Munro V;Wozniak A;Sibley M;Banks C;Duncan C;Linksted P;Hume A;Stables CL;Mayor C;Caldwell J;Wilde K;Cole C;Jefferson E
  • 通讯作者:
    Jefferson E
A National Network of Safe Havens: Scottish Perspective (Preprint)
全国安全港网络:苏格兰视角(预印本)
  • DOI:
    10.2196/preprints.31684
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gao C
  • 通讯作者:
    Gao C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Jefferson其他文献

Feasibility Of Artificial Intelligence Automated Detection And Classification Of Heart Failure From Routine Electronic Health Records
  • DOI:
    10.1016/j.cardfail.2022.10.229
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mon Myat Oo;Jasper Tromp;Chuang Gao;Y.M. Hummel;Magalie Guignard-Duff;Christian Cole;Emily Jefferson;James Hare;Rudolf A de Boer;Adriaan Voors;Carolyn S P Lam;Chim C Lang
  • 通讯作者:
    Chim C Lang
PRE-PROCEDURAL RISK SCORES TO HELP IDENTIFY PATIENTS AT RISK OF CONTRAST INDUCED NEPHROPATHY AFTER CHRONIC TOTAL OCCLUSION PERCUTANEOUS CORONARY INTERVENTION FOR PERI-PROCEDURAL NEPHROPROTECTIVE THERAPIES
  • DOI:
    10.1016/s0735-1097(22)01833-2
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Aram Jamal Mirza;Chuang Gao;Kashan Ali;Samira Bell;Emilie Lambourg;Ify Mordi;Abdulsalam Y. Taha;Shahow A. Ezzaddin;Farhad Huwez;Emily Jefferson;Chim C. Lang
  • 通讯作者:
    Chim C. Lang
A pipeline for harmonising NHS Scotland laboratory data to enable national-level analyses
一条用于协调苏格兰国民保健制度实验室数据以实现国家级分析的管道
  • DOI:
    10.1016/j.jbi.2024.104771
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Chuang Gao;Shahzad Mumtaz;Sophie McCall;Katherine O’Sullivan;Mark McGilchrist;Daniel R. Morales;Christopher Hall;Katie Wilde;Charlie Mayor;Pamela Linksted;Kathy Harrison;Christian Cole;Emily Jefferson
  • 通讯作者:
    Emily Jefferson
Supporting clinical trials through healthcare informatics
  • DOI:
    10.1186/1745-6215-16-s2-o67
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Claire Jones;Emily Jefferson;Fiona Hogarth;Roberta Littleford;Margaret Band
  • 通讯作者:
    Margaret Band
A Digital Tool for Clinical Evidence–Driven Guideline Development by Studying Properties of Trial Eligible and Ineligible Populations: Development and Usability Study
通过研究符合和不符合试验人群的特性来开发临床证据驱动指南的数字工具:开发和可用性研究
  • DOI:
    10.2196/52385
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Shahzad Mumtaz;Megan McMinn;Christian Cole;Chuang Gao;Christopher Hall;Magalie Guignard-Duff;Huayi Huang;David A McAllister;Daniel R Morales;Emily Jefferson;Bruce Guthrie
  • 通讯作者:
    Bruce Guthrie

Emily Jefferson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Jefferson', 18)}}的其他基金

Guidelines and Resources for AI Model Access from TrusTEd Researchenvironments (GRAIMatter)
从 TrustTEd 研究环境访问 AI 模型的指南和资源 (GRAIMatter)
  • 批准号:
    MC_PC_21033
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Intramural
Alleviate: Hub for Pain
缓解:疼痛中心
  • 批准号:
    MR/W014335/1
  • 财政年份:
    2021
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Research Grant

相似海外基金

Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
  • 批准号:
    2318210
  • 财政年份:
    2023
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
Intelligent Biology and Medicine in 2023: Advancing Interdisciplinary Education, Collaboration, and Innovation in Data Science and Artificial Intelligence
2023年智能生物学和医学:推进数据科学和人工智能领域的跨学科教育、合作和创新
  • 批准号:
    2312126
  • 财政年份:
    2023
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
Creative Experimentations for Interdisciplinary Collaboration
跨学科合作的创造性实验
  • 批准号:
    2777573
  • 财政年份:
    2023
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Studentship
Exploring directions for post-pandemic disaster education through interdisciplinary collaboration between the UK and South Korea
英韩跨学科合作探索疫情后灾害教育方向
  • 批准号:
    ES/W010917/1
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Research Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Deplatforming and Online Hate Speech Across the Social Media Ecology
EAGER:DCL:SaTC:实现跨学科合作:社交媒体生态中的去平台化和在线仇恨言论
  • 批准号:
    2210023
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
Increasing Success of STEM Students through Cohort Building, Mentoring, and Career Discerning Experiences: an Interdisciplinary Collaboration
通过队列建设、指导和职业洞察经验提高 STEM 学生的成功:跨学科合作
  • 批准号:
    2220647
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Using NLP to Identify Suspicious Transactions in Omnichannel Online C2C Marketplaces
EAGER:DCL:SaTC:实现跨学科协作:使用 NLP 识别全渠道在线 C2C 市场中的可疑交易
  • 批准号:
    2210091
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Efficient Human-in-the-Loop Redaction of Language Development Corpora
EAGER:DCL:SaTC:实现跨学科协作:语言开发语料库的高效人机交互编辑
  • 批准号:
    2210193
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Space Cybersecurity, Policy, and Risks
EAGER:DCL:SaTC:实现跨学科合作:空间网络安全、政策和风险
  • 批准号:
    2208458
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
Intelligent Biology and Medicine in 2022: Enhancing Interdisciplinary Education, Collaboration, and Innovation in Data Science and Artificial Intelligence
2022年智能生物学和医学:加强数据科学和人工智能领域的跨学科教育、合作和创新
  • 批准号:
    2214062
  • 财政年份:
    2022
  • 资助金额:
    $ 363.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了