Guidelines and Resources for AI Model Access from TrusTEd Researchenvironments (GRAIMatter)
从 TrustTEd 研究环境访问 AI 模型的指南和资源 (GRAIMatter)
基本信息
- 批准号:MC_PC_21033
- 负责人:
- 金额:$ 40.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Intramural
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Trusted Research Environments (TREs) provide a secure location for researchers to analyse data for projects in the public interest e.g. providing information to SAGE to fight the COVID-19 pandemic. TRE staff check outputs to prevent disclosure of individuals’ confidential data.TREs have historically supported only classical statistical data analysis. There is an increasing need to also facilitate the training of Artificial Intelligence (AI) models. AI has many valuable applications e.g., spotting human errors, streamlining processes, helping with repetitive tasks and supporting clinical decision making. The trained models then need to be exported from TREs for use. The size and complexity of AI models presents significant challenges for the disclosure-checking process. Models may be susceptible to external hacking: complicated methods to reverse engineer the learning process to find out about the data used for training, with more potential to lead to re-identification than conventional statistical methods.With input from public representatives, GRAIMatter will assess a range of tools and methods to support TREs to assess output from AI methods for potentially identifiable information, investigate the legal and ethical implications and controls, and produce a set of guidelines and recommendations to support all TREs with export controls of AI algorithms.
可信研究环境(TRE)为研究人员提供了一个安全的位置,以便为公共利益的项目分析数据,例如为SAGE提供抗击COVID-19大流行的信息。TRE工作人员检查输出,以防止个人的机密数据泄露。TRE历来只支持经典的统计数据分析。越来越需要促进人工智能(AI)模型的训练。AI有许多有价值的应用,例如,发现人为错误、简化流程、帮助完成重复性任务并支持临床决策。然后,需要从TREs导出经过训练的模型以供使用。人工智能模型的规模和复杂性给安全检查过程带来了重大挑战。模型可能容易受到外部黑客攻击:利用复杂的方法对学习过程进行逆向工程,以了解用于培训的数据,比传统的统计方法更有可能导致重新识别。在公众代表的参与下,GRAIMatter将评估一系列工具和方法,以支持TREs评估人工智能方法的输出,以获得潜在的可识别信息,调查法律的和道德的影响和控制,并制定一套指导方针和建议,以支持所有具有人工智能算法出口控制的TREs。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scottish Medical Imaging Service - Technical and Governance controls.
- DOI:10.23889/ijpds.v7i3.1869
- 发表时间:2022-08-25
- 期刊:
- 影响因子:0
- 作者:Caldwell J;Wallace R;Morris C;Fleming S;Baxter R;MacLeod R;Kerr W;Scobbie D;Rogers S;Ritchie F;Mansouri-Benssassi E;Krueger S;Jefferson E
- 通讯作者:Jefferson E
A National Network of Safe Havens: Scottish Perspective.
- DOI:10.2196/31684
- 发表时间:2022-03-09
- 期刊:
- 影响因子:7.4
- 作者:Gao C;McGilchrist M;Mumtaz S;Hall C;Anderson LA;Zurowski J;Gordon S;Lumsden J;Munro V;Wozniak A;Sibley M;Banks C;Duncan C;Linksted P;Hume A;Stables CL;Mayor C;Caldwell J;Wilde K;Cole C;Jefferson E
- 通讯作者:Jefferson E
Machine learning models in trusted research environments -- understanding operational risks
可信研究环境中的机器学习模型——了解运营风险
- DOI:10.23889/ijpds.v8i1.2165
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ritchie F
- 通讯作者:Ritchie F
GRAIMATTER Green Paper: Recommendations for disclosure control of trained Machine Learning (ML) models from Trusted Research Environments (TREs)
- DOI:10.5281/zenodo.7089491
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:E. Jefferson;J. Liley;Maeve Malone;S. Reel;Alba Crespi-Boixader;X. Kerasidou;Francesco Tava;Andrew McCarthy;R. Preen;Alberto Blanco-Justicia;Esma Mansouri-Benssassi;J. Domingo-Ferrer;J. Beggs;Antony Chuter;Christian Cole;F. Ritchie;A. Daly;Simon Rogers;Jim Q. Smith
- 通讯作者:E. Jefferson;J. Liley;Maeve Malone;S. Reel;Alba Crespi-Boixader;X. Kerasidou;Francesco Tava;Andrew McCarthy;R. Preen;Alberto Blanco-Justicia;Esma Mansouri-Benssassi;J. Domingo-Ferrer;J. Beggs;Antony Chuter;Christian Cole;F. Ritchie;A. Daly;Simon Rogers;Jim Q. Smith
Disclosure control of machine learning models from trusted research environments (TRE): New challenges and opportunities.
- DOI:10.1016/j.heliyon.2023.e15143
- 发表时间:2023-04
- 期刊:
- 影响因子:4
- 作者:Mansouri-Benssassi, Esma;Rogers, Simon;Reel, Smarti;Malone, Maeve;Smith, Jim;Ritchie, Felix;Jefferson, Emily
- 通讯作者:Jefferson, Emily
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Jefferson其他文献
Feasibility Of Artificial Intelligence Automated Detection And Classification Of Heart Failure From Routine Electronic Health Records
- DOI:
10.1016/j.cardfail.2022.10.229 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:
- 作者:
Mon Myat Oo;Jasper Tromp;Chuang Gao;Y.M. Hummel;Magalie Guignard-Duff;Christian Cole;Emily Jefferson;James Hare;Rudolf A de Boer;Adriaan Voors;Carolyn S P Lam;Chim C Lang - 通讯作者:
Chim C Lang
PRE-PROCEDURAL RISK SCORES TO HELP IDENTIFY PATIENTS AT RISK OF CONTRAST INDUCED NEPHROPATHY AFTER CHRONIC TOTAL OCCLUSION PERCUTANEOUS CORONARY INTERVENTION FOR PERI-PROCEDURAL NEPHROPROTECTIVE THERAPIES
- DOI:
10.1016/s0735-1097(22)01833-2 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Aram Jamal Mirza;Chuang Gao;Kashan Ali;Samira Bell;Emilie Lambourg;Ify Mordi;Abdulsalam Y. Taha;Shahow A. Ezzaddin;Farhad Huwez;Emily Jefferson;Chim C. Lang - 通讯作者:
Chim C. Lang
A pipeline for harmonising NHS Scotland laboratory data to enable national-level analyses
一条用于协调苏格兰国民保健制度实验室数据以实现国家级分析的管道
- DOI:
10.1016/j.jbi.2024.104771 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:4.500
- 作者:
Chuang Gao;Shahzad Mumtaz;Sophie McCall;Katherine O’Sullivan;Mark McGilchrist;Daniel R. Morales;Christopher Hall;Katie Wilde;Charlie Mayor;Pamela Linksted;Kathy Harrison;Christian Cole;Emily Jefferson - 通讯作者:
Emily Jefferson
Supporting clinical trials through healthcare informatics
- DOI:
10.1186/1745-6215-16-s2-o67 - 发表时间:
2015-11-16 - 期刊:
- 影响因子:2.000
- 作者:
Claire Jones;Emily Jefferson;Fiona Hogarth;Roberta Littleford;Margaret Band - 通讯作者:
Margaret Band
A Digital Tool for Clinical Evidence–Driven Guideline Development by Studying Properties of Trial Eligible and Ineligible Populations: Development and Usability Study
通过研究符合和不符合试验人群的特性来开发临床证据驱动指南的数字工具:开发和可用性研究
- DOI:
10.2196/52385 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Shahzad Mumtaz;Megan McMinn;Christian Cole;Chuang Gao;Christopher Hall;Magalie Guignard-Duff;Huayi Huang;David A McAllister;Daniel R Morales;Emily Jefferson;Bruce Guthrie - 通讯作者:
Bruce Guthrie
Emily Jefferson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Jefferson', 18)}}的其他基金
MICA: InterdisciPlInary Collaboration for efficienT and effective Use of clinical images in big data health care RESearch: PICTURES
MICA:跨学科合作,在大数据医疗保健中高效、有效地使用临床图像 研究:图片
- 批准号:
MR/S010351/1 - 财政年份:2019
- 资助金额:
$ 40.2万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 40.2万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403398 - 财政年份:2024
- 资助金额:
$ 40.2万 - 项目类别:
Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
- 批准号:
2343693 - 财政年份:2023
- 资助金额:
$ 40.2万 - 项目类别:
Standard Grant
RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources
RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源
- 批准号:
2335975 - 财政年份:2023
- 资助金额:
$ 40.2万 - 项目类别:
Standard Grant
Measure recyclable resources in the waste industry to meet the foundational industries demands for recycled material using AI for tracking SKU
使用 AI 跟踪 SKU 测量废物行业中的可回收资源,以满足基础行业对回收材料的需求
- 批准号:
10028681 - 财政年份:2022
- 资助金额:
$ 40.2万 - 项目类别:
Investment Accelerator
An AI enhanced service development and management platform. Empowering SMEs to extract maximum value from high cost computing resources.
人工智能增强的服务开发和管理平台。
- 批准号:
10034583 - 财政年份:2022
- 资助金额:
$ 40.2万 - 项目类别:
Collaborative R&D
An AI communications platform connecting SMEs and communities to allow them to share resources and exercise greater buying power, saving SMEs £55,000 a year on average.
连接中小企业和社区的人工智能通信平台,让他们共享资源并发挥更大的购买力,平均每年为中小企业节省 55,000 英镑。
- 批准号:
82092 - 财政年份:2020
- 资助金额:
$ 40.2万 - 项目类别:
Collaborative R&D
Research on prototype construction method and multi-disciplinary implementation education for developing human resources who can use IoT and AI
培养能够使用物联网和人工智能的人才的原型构建方法和多学科实施教育研究
- 批准号:
19K03151 - 财政年份:2019
- 资助金额:
$ 40.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-DCL: Fairness for the Allocation of Healthcare Resources
AI-DCL:医疗资源分配的公平性
- 批准号:
1927486 - 财政年份:2019
- 资助金额:
$ 40.2万 - 项目类别:
Standard Grant
A More Perfect Union: Leveraging Clinically Deployed Models and Cancer Epidemiology Cohort Data to Improve AI/ML Readiness of NIH-Supported Population Sciences Resources
更完美的联盟:利用临床部署的模型和癌症流行病学队列数据来提高 NIH 支持的人口科学资源的 AI/ML 准备情况
- 批准号:
10594304 - 财政年份:2015
- 资助金额:
$ 40.2万 - 项目类别: