Molecular Network Heat Engines
分子网络热机
基本信息
- 批准号:MR/S032541/1
- 负责人:
- 金额:$ 147.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heat engines form one of the cornerstones of classical thermodynamics. By converting heat into mechanical work they powered the industrial revolution in the 19th century. Molecular heat engines have the potential to convert thermal energy to electrical power and vice versa with efficiency close to the thermodynamic limit. The topic of single-molecule thermoelectricity is therefore of fundamental importance for the development of on-chip cooling and heat-to-electricity energy harvesting technologies that could power the quantum revolution of the 21st century. The key challenge in harnessing the thermoelectric energy conversion capabilities of single molecules is gaining a better understanding of the quantum mechanical interactions between molecular electronic and vibrational degrees of freedom, which could prove transformative for experiments in the research area of open quantum systems. These experiments will deliver impact in two ways: by exploring new science and by laying the foundation for new technologies.New science: Molecular heat engines form an ideal platform for exploring the dialogue between quantum mechanics and thermodynamics. While some theoretical efforts have been undertaken towards this end, many predictions remain to be verified by experiments. New insights into thermodynamics on the molecular scale will also raise further questions: Does quantum coherence boost the thermoelectric efficiency of single-molecule heat engines? What happens if the Born-Oppenheimer approximation breaks down? Can molecular vibrational modes be electrically cooled to their ground state?New technologies: Thermoelectrics have a long history of providing simple, reliable power generation. Yet, the use of thermoelectric materials to recover waste heat has remained limited due to their scarcity and toxicity, and the unfortunate fact that the properties that determine their efficiency - the electrical conductance, the thermal conductance, and the Seebeck coefficient - are contra-indicated, meaning that an improvement to one will deteriorate another. Quantum effects in single-molecule heat engines lift the link between these contra-indicated properties, thereby opening up the possibility for highly efficient thermoelectric generators that could provide a low-cost, environmentally-friendly means of scavenging waste heat that would drastically decrease global energy consumption.This proposal seeks to develop the instrumentation and experimental methodology to investigate controlled thermoelectric heat-to-energy conversion in a single molecule, where the emphasis is on controlling the molecular interactions. This control will be achieved by using two-dimensional networks of nanoparticles linked via molecular junctions. Building on recent ground-breaking experiments, I will use electric-field control to tune the molecular energy level alignment with respect of the Fermi level of the substrate, while simultaneously controlling the tunnel coupling and applied bias voltage. A local heater will drive a thermally generated flow of electrons through a single molecule, which I will be able to optimize thanks to the unprecedented degree of tunability in the system. By probing the thermoelectric efficiency over a wide parameter space, I will establish the intrinsic thermodynamic limits to single-molecule energy conversion.
热机是经典热力学的基石之一。通过将热量转化为机械功,他们推动了世纪的工业革命。分子热发动机具有将热能转换为电能的潜力,反之亦然,其效率接近热力学极限。因此,单分子热电性的主题对于开发片上冷却和热电能量收集技术具有根本的重要性,这些技术可以为21世纪的量子革命提供动力。利用单分子的热电能转换能力的关键挑战是更好地理解分子电子和振动自由度之间的量子力学相互作用,这可能会对开放量子系统研究领域的实验产生变革性影响。这些实验将在两个方面产生影响:探索新科学和为新技术奠定基础。新科学:分子热机是探索量子力学和热力学之间对话的理想平台。虽然已经为此进行了一些理论上的努力,但许多预测仍有待实验验证。对分子尺度热力学的新见解也将提出进一步的问题:量子相干性是否会提高单分子热机的热电效率?如果玻恩-奥本海默近似失效会发生什么?分子的振动模式能被电冷却到基态吗?新技术:热电在提供简单、可靠的发电方面有着悠久的历史。然而,使用热电材料来回收废热仍然受到限制,这是由于它们的稀缺性和毒性,以及不幸的事实,即决定其效率的特性-电导率,热导率和塞贝克系数-是矛盾的,这意味着对一个的改进将恶化另一个。单分子热机中的量子效应解除了这些矛盾性质之间的联系,从而为高效热电发电机提供了可能性,这一提议旨在开发仪器和实验方法,以研究受控热电热-能量转换在一个单一的分子,重点是控制分子间的相互作用。这种控制将通过使用经由分子结连接的纳米颗粒的二维网络来实现。在最近的突破性实验的基础上,我将使用电场控制来调整相对于衬底费米能级的分子能级排列,同时控制隧道耦合和施加的偏置电压。一个局部加热器将驱动一个热产生的电子流通过一个单一的分子,我将能够优化感谢系统中前所未有的可调性。通过在宽参数空间上探测热电效率,我将建立单分子能量转换的内在热力学极限。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental evidence of disorder enhanced electron-phonon scattering in graphene devices
- DOI:10.1016/j.carbon.2020.12.012
- 发表时间:2021-04-03
- 期刊:
- 影响因子:10.9
- 作者:Evangeli, Charalambos;McCann, Edward;Mol, Jan A.
- 通讯作者:Mol, Jan A.
Charge-State Dependent Vibrational Relaxation in a Single-Molecule Junction.
- DOI:10.1103/physrevlett.129.207702
- 发表时间:2022-02
- 期刊:
- 影响因子:8.6
- 作者:X. Bian;Zhixing Chen;Jakub K. Sowa;C. Evangeli;B. Limburg;J. Swett;J. Baugh;G. Briggs;H. Anderson;J. Mol;James O. Thomas
- 通讯作者:X. Bian;Zhixing Chen;Jakub K. Sowa;C. Evangeli;B. Limburg;J. Swett;J. Baugh;G. Briggs;H. Anderson;J. Mol;James O. Thomas
Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes
- DOI:10.1007/s12274-022-4535-8
- 发表时间:2022-06-25
- 期刊:
- 影响因子:9.9
- 作者:Fried,Jasper P.;Swett,Jacob L.;Mol,Jan A.
- 通讯作者:Mol,Jan A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Mol其他文献
Jan Mol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Mol', 18)}}的其他基金
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Microstructure Observations of Vertical Mixing and Heat Fluxes from Chipods Deployed on Arctic Observing Network Cruises
合作研究:EAGER:北极观测网络游轮上部署的 Chipods 对垂直混合和热通量的微观结构观测
- 批准号:
2234003 - 财政年份:2023
- 资助金额:
$ 147.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Microstructure Observations of Vertical Mixing and Heat Fluxes from Chipods Deployed on Arctic Observing Network Cruises
合作研究:EAGER:北极观测网络游轮上部署的 Chipods 对垂直混合和热通量的微观结构观测
- 批准号:
2234001 - 财政年份:2023
- 资助金额:
$ 147.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Microstructure Observations of Vertical Mixing and Heat Fluxes from Chipods Deployed on Arctic Observing Network Cruises
合作研究:EAGER:北极观测网络游轮上部署的 Chipods 对垂直混合和热通量的微观结构观测
- 批准号:
2234002 - 财政年份:2023
- 资助金额:
$ 147.11万 - 项目类别:
Standard Grant
Heat Network Performance Benchmarking - 'Heat Mark'
热力网络性能基准测试 - “热力标记”
- 批准号:
10044255 - 财政年份:2022
- 资助金额:
$ 147.11万 - 项目类别:
Grant for R&D
Development of observing network for heat balance of sea ice based on ice-ocean boundary layer theory
基于冰海边界层理论的海冰热平衡观测网络开发
- 批准号:
22H01296 - 财政年份:2022
- 资助金额:
$ 147.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of mathematical model of network-type convective heat transfer system derived from human circulatory system
源自人体循环系统的网络型对流传热系统数学模型的建立
- 批准号:
21H01262 - 财政年份:2021
- 资助金额:
$ 147.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Network headroom, engineering upgrades and public acceptance (NEUPA): Connecting engineering for heat system change to consumers and citizens
网络净空、工程升级和公众接受度 (NEUPA):将供热系统变更工程与消费者和公民联系起来
- 批准号:
EP/T023031/1 - 财政年份:2020
- 资助金额:
$ 147.11万 - 项目类别:
Research Grant
Stabilizing natural ventilation utilizing waste heat optimized by Artificial Neutral Network
利用人工中性网络优化的废热稳定自然通风
- 批准号:
20F20062 - 财政年份:2020
- 资助金额:
$ 147.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows