Building and exploiting a high-performance monolithic trapped-ion quantum computer

构建和开发高性能单片俘获离子量子计算机

基本信息

  • 批准号:
    MR/S03238X/1
  • 负责人:
  • 金额:
    $ 195.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This project is aimed at developing the world's highest-performance quantum processor - a new form of computer that manipulates information in a vastly different and more powerful way than a conventional computer. Sufficiently large quantum computers can solve problems intractable on any type of non-quantum ("classical") hardware. For example, a quantum computer would be able to simulate the physics or chemistry of complex problems impossible to model on a classical super-computer. This would profoundly impact scientific research, and allow access to regimes that are currently beyond experimental or theoretical reach; for example in quantum chemistry, or condensed matter physics. Despite 20 years of experimental work on quantum computing, a quantum processor with such computational power has remained beyond the reach of experiments. Recent progress in trapped-ion techniques means that such a machine is now attainable in the time-frame of this project. In recent years a variety of technologies has been used to show that the building blocks of a quantum computer can work well enough to perform useful real-world computations. The challenge now, for all technologies, is to develop systems with a large number of qubits (quantum bits, the basic unit of information in a quantum computer) possessing the qubit-to-qubit connectivity which is essential for quantum computing, while minimizing operation errors. The eventual aim for this field is to build processors containing hundreds of thousands of effectively perfect qubits all connected by high precision quantum logic gates. Such a full scale quantum computer will change the 21st century in the same way as the classical computer changed the 20th century. However, building a processor this complex remains a formidable engineering challenge which will require significant resources and last for decades.The focus of this project is instead to try and aim for a realistic near-term goal. Using trapped atomic ions as qubits, and taking advantage of the high fidelity and high connectivity gates already proven with these qubits, we aim to make a processor with at least 50 qubits, with gate errors low enough to perform circuits of thousands of gates. Such an intermediate scale quantum processor is beyond the ability of even our most powerful classical supercomputers to mimic. With this processor, we aim to demonstrate the potential quantum computers have to solve real-world problems with a "quantum advantage". In addition, we aim to develop and to test noise-resilient methods to extract maximum performance from intermediate-scale processors, such as error mitigation protocols and hybrid quantum-classical algorithms. However, as the history of classical computing has shown us, with the ability to develop and to prototype new techniques on real quantum hardware the largest rewards may well come from unexpected directions. This project will deliver that hardware.
该项目旨在开发世界上性能最高的量子处理器——一种新型计算机,它以与传统计算机截然不同且更强大的方式处理信息。足够大的量子计算机可以解决任何类型的非量子(“经典”)硬件上棘手的问题。例如,量子计算机将能够模拟经典超级计算机无法建模的复杂问题的物理或化学。这将深刻影响科学研究,并允许进入目前超出实验或理论范围的制度;例如在量子化学或凝聚态物理学中。尽管量子计算的实验工作已经进行了20年,但具有如此计算能力的量子处理器仍然超出了实验的范围。俘获离子技术的最新进展意味着这样的机器现在可以在该项目的时间内实现。近年来,各种技术已被用来证明量子计算机的构建模块可以很好地工作以执行有用的现实世界计算。对于所有技术来说,现在的挑战是开发具有大量量子位(量子位,量子计算机中信息的基本单位)的系统,这些系统具有量子计算所必需的量子位到量子位的连接性,同时最大限度地减少操作错误。该领域的最终目标是构建包含数十万个有效完美量子位的处理器,所有这些量子位均通过高精度量子逻辑门连接。这样的全尺寸量子计算机将像经典计算机改变 20 世纪一样改变 21 世纪。然而,构建如此复杂的处理器仍然是一项艰巨的工程挑战,需要大量资源并持续数十年。该项目的重点是尝试实现现实的近期目标。使用捕获的原子离子作为量子位,并利用这些量子位已经证明的高保真度和高连接性门,我们的目标是制造一个具有至少 50 个量子位的处理器,门错误足够低,足以执行数千个门的电路。这种中等规模的量子处理器甚至超出了我们最强大的经典超级计算机的模仿能力。通过该处理器,我们的目标是展示量子计算机具有以“量子优势”解决现实世界问题的潜力。此外,我们的目标是开发和测试抗噪声方法,以从中等规模处理器中提取最大性能,例如错误缓解协议和混合量子经典算法。然而,正如经典计算的历史向我们展示的那样,凭借在真正的量子硬件上开发和原型化新技术的能力,最大的回报很可能来自意想不到的方向。该项目将提供该硬件。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latest developments in the Sinara open hardware ecosystem
Sinara开放硬件生态系统的最新进展
  • DOI:
    10.1109/qce53715.2022.00123
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kulik P
  • 通讯作者:
    Kulik P
High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network.
  • DOI:
    10.1103/physrevlett.124.110501
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    L. J. Stephenson;D. P. Nadlinger;B. C. Nichol;S. An;P. Drmota;T. Ballance;K. Thirumalai;J. Goodwin;D. Lucas;C. Ballance
  • 通讯作者:
    L. J. Stephenson;D. P. Nadlinger;B. C. Nichol;S. An;P. Drmota;T. Ballance;K. Thirumalai;J. Goodwin;D. Lucas;C. Ballance
Introducing nonlinear activations into quantum generative models
  • DOI:
    10.1103/physreva.107.012406
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kaitlin Gili;Mykolas Sveistrys;C. Ballance
  • 通讯作者:
    Kaitlin Gili;Mykolas Sveistrys;C. Ballance
Do quantum circuit Born machines generalize?
  • DOI:
    10.1088/2058-9565/acd578
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Gili, Kaitlin;Hibat-Allah, Mohamed;Perdomo-Ortiz, Alejandro
  • 通讯作者:
    Perdomo-Ortiz, Alejandro
Synthesizing a s ^ z spin-dependent force for optical, metastable, and ground-state trapped-ion qubits
合成光学、亚稳态和基态俘获离子量子位的 s ^ z 自旋相关力
  • DOI:
    10.1103/physreva.107.022617
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bazavan O
  • 通讯作者:
    Bazavan O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Ballance其他文献

Christopher Ballance的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Ballance', 18)}}的其他基金

ABaQuS: Advanced Barium Quantum Systems
ABaQuS:先进的钡量子系统
  • 批准号:
    MR/Y003799/1
  • 财政年份:
    2024
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Fellowship

相似海外基金

Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Standard Grant
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
  • 批准号:
    10659114
  • 财政年份:
    2022
  • 资助金额:
    $ 195.88万
  • 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
  • 批准号:
    10431263
  • 财政年份:
    2022
  • 资助金额:
    $ 195.88万
  • 项目类别:
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155097
  • 财政年份:
    2022
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Standard Grant
Exploiting Urine Derived DNA for the Assessment of Bladder Cancer using High Accuracy Sequencing
利用尿液衍生 DNA 通过高精度测序评估膀胱癌
  • 批准号:
    10197377
  • 财政年份:
    2021
  • 资助金额:
    $ 195.88万
  • 项目类别:
Exploiting Urine Derived DNA for the Assessment of Bladder Cancer using High Accuracy Sequencing
利用尿液衍生 DNA 通过高精度测序评估膀胱癌
  • 批准号:
    10353417
  • 财政年份:
    2021
  • 资助金额:
    $ 195.88万
  • 项目类别:
Software architecture of high-performance database engines for exploiting storage class memory
用于利用存储级内存的高性能数据库引擎的软件架构
  • 批准号:
    20H04191
  • 财政年份:
    2020
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955196
  • 财政年份:
    2020
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955353
  • 财政年份:
    2020
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Continuing Grant
SHF: Small: Understanding and Exploiting Software Defined Networks (SDN) in High Performance Computing (HPC) Environments
SHF:小型:理解和利用高性能计算 (HPC) 环境中的软件定义网络 (SDN)
  • 批准号:
    2007827
  • 财政年份:
    2020
  • 资助金额:
    $ 195.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了