Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
基本信息
- 批准号:1955196
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced computing systems have long been enablers for breakthroughs in science, engineering, and new technologies. However, with the slowing down of Moore’s law and the relentless needs of Big-Data applications, e.g., deep learning, graph analytics, and scientific simulations, current solutions are not adequate. There is a need for innovative computer architectures and computationally efficient methods to design application-specific hardware systems to optimize performance, power consumption, and reliability. The main focus of this work is design and demonstration of a heterogeneous single-chip manycore platform, integrating CPU, GPU, accelerator, and memory cores, via a network-on-chip to avoid expensive off-chip data transfers. The goal of this project is to address the design of application-specific heterogeneous manycore systems that are poised to achieve unprecedented levels of performance and energy-efficiency for Big-Data applications. The PIs will disseminate research outcomes via publications, seminars, tutorials, and workshops. The project is also leading to the development of an interdisciplinary research-based curriculum integrating computer architectures, machine learning, and data-driven design optimization. Undergraduate and graduate students involved in this research will be trained to apply classroom knowledge to research problems that require next-generation hardware, software, and theoretical expertise. The project will lay the foundations for a novel computing paradigm for Big-Data applications that allows us to quickly design and autonomously self-manage heterogeneous manycore computing systems to improve performance, reduce power consumption, and enhance reliability. In-memory processing can overcome the memory wall, but it introduces new challenges in overall application-specific system optimization. The specific research tasks include: 1) Data-driven multi-objective design space exploration and optimization algorithms for heterogeneous manycore architectures; 2) Reliability assessment and system design for reliability; 3) Structured learning framework for autonomous resource management; and 4) Performance, power, and reliability evaluation using emerging Big-Data application workloads. This framework will combine the benefits of multi-objective design space exploration and optimization, heterogeneity in computation and communication, and data-driven algorithms to improve performance, energy-efficiency, and reliability of manycore platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
先进的计算系统长期以来一直是科学、工程和新技术突破的推动者。然而,随着摩尔定律的放缓和大数据应用程序的不断需求,例如,深度学习、图形分析和科学模拟,目前的解决方案是不够的。需要创新的计算机架构和计算高效的方法来设计专用硬件系统以优化性能、功耗和可靠性。这项工作的主要重点是设计和演示一个异构的单芯片众核平台,集成CPU,GPU,加速器和内存内核,通过片上网络,以避免昂贵的片外数据传输。该项目的目标是解决特定于应用程序的异构众核系统的设计,这些系统有望为大数据应用程序实现前所未有的性能和能效水平。PI将通过出版物、研讨会、教程和讲习班传播研究成果。该项目还导致了一个跨学科的研究为基础的课程,整合计算机体系结构,机器学习和数据驱动的设计优化的发展。参与这项研究的本科生和研究生将接受培训,将课堂知识应用于需要下一代硬件,软件和理论专业知识的研究问题。该项目将为大数据应用程序的新型计算范式奠定基础,使我们能够快速设计和自主管理异构众核计算系统,以提高性能、降低功耗并增强可靠性。内存中处理可以克服内存墙,但它在整体特定于应用程序的系统优化中引入了新的挑战。具体研究任务包括:1)异构众核架构的数据驱动多目标设计空间探索和优化算法; 2)可靠性评估和可靠性系统设计; 3)自主资源管理的结构化学习框架; 4)使用新兴的大数据应用工作负载进行性能,功耗和可靠性评估。该框架将结合联合收割机的多目标设计空间探索和优化,计算和通信的异构性,以及数据驱动算法的好处,以提高性能,能源效率和众核平台的可靠性。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Computing and the Efficient Machine Learning Expedition
- DOI:10.1145/3508352.3561105
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
- 通讯作者:J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
High-Throughput Training of Deep CNNs on ReRAM-Based Heterogeneous Architectures via Optimized Normalization Layers
通过优化的归一化层在基于 ReRAM 的异构架构上进行深度 CNN 的高吞吐量训练
- DOI:10.1109/tcad.2021.3083684
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Joardar, Biresh Kumar;Deshwal, Aryan;Doppa, Janardhan Rao;Pande, Partha Pratim;Chakrabarty, Krishnendu
- 通讯作者:Chakrabarty, Krishnendu
ReTransformer: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration
- DOI:10.1145/3400302.3415640
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Xiaoxuan Yang;Bonan Yan;H. Li;Yiran Chen
- 通讯作者:Xiaoxuan Yang;Bonan Yan;H. Li;Yiran Chen
DARe: DropLayer-Aware Manycore ReRAM architecture for Training Graph Neural Networks
- DOI:10.1109/iccad51958.2021.9643511
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Aqeeb Iqbal Arka;B. K. Joardar;J. Doppa;P. Pande;K. Chakrabarty
- 通讯作者:Aqeeb Iqbal Arka;B. K. Joardar;J. Doppa;P. Pande;K. Chakrabarty
ReaLPrune: ReRAM Crossbar-Aware Lottery Ticket Pruning for CNNs
- DOI:10.1109/tetc.2022.3223630
- 发表时间:2023-04
- 期刊:
- 影响因子:5.9
- 作者:B. K. Joardar;J. Doppa;Hai Helen Li;K. Chakrabarty;P. Pande
- 通讯作者:B. K. Joardar;J. Doppa;Hai Helen Li;K. Chakrabarty;P. Pande
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Operation Mode of Integrated Energy System with Liquid Air Energy Storage
液态空气储能综合能源系统运行模式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ning Bai;Yixue Liu;Xiaoxia Jiang;S. Cui;Hai Li;Qing He - 通讯作者:
Qing He
Shortcut-to-adiabaticity quantum tripartite Otto cycle
绝热性量子三方奥托循环的捷径
- DOI:
10.1088/1361-6455/ac3c93 - 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Lunan Li;Hai Li;Wenli Yu;Yaming Hao;Lei Li;Jian Zou - 通讯作者:
Jian Zou
ROS-Based Control Implementation of an Soft Gripper with Force Feedback
基于 ROS 的力反馈软夹具控制实现
- DOI:
10.1007/978-3-030-89095-7_51 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yue Qiu;Xianmin Zhang;Hai Li;Rixin Wang - 通讯作者:
Rixin Wang
Preparation and Characterization of GLUT1-mediated Novel Brain Targeting Magnetic Nanoparticles
GLUT1介导的新型脑靶向磁性纳米颗粒的制备和表征
- DOI:
10.2174/1570180815666180322113934 - 发表时间:
2018-10 - 期刊:
- 影响因子:1
- 作者:
Zhang Li;Zhao Yi;Yue Qiming;Fu Qiuyi;Hai Li;Guo Li;Wang Qiantao;Wu Yong - 通讯作者:
Wu Yong
Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy
基于明场显微镜的早期胚胎卵裂球自动三维成像识别
- DOI:
10.1016/j.optlaseng.2020.106093 - 发表时间:
2020-07 - 期刊:
- 影响因子:4.6
- 作者:
Sheng Yao;James K. Mills;Ihab Abu Ajamieh;Hai Li;Xianmin Zhang - 通讯作者:
Xianmin Zhang
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
- 批准号:
2233808 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
- 批准号:
2040588 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
- 批准号:
1910299 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
- 批准号:
1717885 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant