400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature

植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包

基本信息

  • 批准号:
    MR/T018585/1
  • 负责人:
  • 金额:
    $ 138.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Distribution of water, mineral nutrients and food throughout the plant is carried out using an internal plumbing system made up of two highly specialised tissues - xylem and phloem. The acquisition of these specialised tissues during plant evolution was one of the key innovations that allowed plants to evolve from tiny moss-like species into the towering trees and the diversity of crop species that dominate the landscape today. The xylem and phloem are intimately linked, but functionally different, with the xylem transporting water and the phloem transporting food throughout the plant. All economically important plants, whether crop or forest species, rely on the transport of food, in the form of sugars, through the phloem. However, despite the key role that the phloem plays in all parts of plant life, we do not know how the structure and function of the phloem will change, or can be engineered to respond, to future climate change. A vital line of evidence for predicting how the phloem will likely change in the future is preserved in the previously unexplored fossil record of plants that lived through prehistoric episodes of global climate change, and extremes of atmospheric CO2. The aim of the proposed research is to investigate key unanswered questions about the evolution of the phloem, one of the most important but least well understood plant tissues. I will transform our knowledge of phloem evolution by tackling three overarching questions: (i) when did the phloem originate, (ii) how has its structure, function and genetic toolkit evolved over the past 400 million years, (iii) how has phloem evolution been driven by climate change? To answer these questions I will combine cutting-edge 3D imaging of fossils, computational modelling of phloem function never before undertaken with fossils, and comparative genomic analyses of living plants. To answer these key questions I have identified three objectives for the Fellowship:1. Define the origin of the phloem in land plants2. Reveal major evolutionary innovations in phloem structure and function in relation to climatic change through geological time.3. Characterise the genetic innovations that underpinned the diversification of the phloemCombining studies of living species, fossils and genes, I will draw evolutionary conclusions about the phloem that none of these lines of evidence alone could achieve, marking a step change in our understanding of phloem evolution. The impact of this study will be to shed light on the evolution of this crucial plant tissue and to help understand how the structure and function of the phloem is tied to the level of atmospheric CO2. The findings of the Fellowship will therefore be essential for predicting how the phloem structure of living plants, including economically important crop and tree species, will likely respond in the next 50 to 100 years to rising atmospheric CO2 caused by anthropogenic climate change.I will be uniquely placed at the University of Edinburgh to carry out this programme of research. The School of Biological Sciences (SBS) is a world leader in studying the structural, functional and genetic changes that underpin complex plant traits in diverse lineages. In addition, my Fellowship will benefit greatly from collaboration with the palaeobiology group in the outstanding School of Geoscience and the collections of the two project partner organisations; the fossil plants in the National Museum Scotland (NMS) and living collections in the Royal Botanic Garden Edinburgh (RBGE). In particular, the NMS contains a unique and unexploited collection that will be essential for my proposed research. Taken together, the excellent research environment in SBS, strength in palaeobiology in the School of Geoscience and access to the collections of the project partners makes this a Fellowship that could not be successfully accomplished anywhere else in the world.
水、矿物质营养和食物在整个植物中的分配是通过由两种高度专业化的组织-木质部和韧皮部组成的内部管道系统进行的。在植物进化过程中获得这些专门的组织是关键的创新之一,使植物从微小的苔藓样物种进化成参天大树和主导今天景观的作物物种多样性。木质部和韧皮部紧密相连,但功能不同,木质部在整个植物中运输水分,而韧皮部运输食物。所有具有重要经济意义的植物,无论是作物还是森林物种,都依赖于通过韧皮部以糖的形式运输食物。然而,尽管韧皮部在植物生命的各个部分都起着关键作用,但我们不知道韧皮部的结构和功能将如何改变,或者可以被改造以应对未来的气候变化。预测韧皮部在未来可能如何变化的一条重要证据保存在以前未被探索的植物化石记录中,这些植物经历了史前全球气候变化和大气二氧化碳的极端事件。拟议研究的目的是调查有关韧皮部进化的关键未回答的问题,韧皮部是最重要但最不了解的植物组织之一。我将通过解决三个首要问题来改变我们对韧皮部进化的认识:(i)韧皮部何时起源,(ii)在过去的4亿年中,它的结构,功能和遗传工具包是如何演变的,(iii)气候变化如何驱动韧皮部进化?为了回答这些问题,我将结合联合收割机先进的3D成像化石,韧皮部功能的计算建模以前从未与化石,和比较基因组分析活植物。为了回答这些关键问题,我确定了奖学金的三个目标:1。定义陆生植物韧皮部的起源2。揭示了韧皮部结构和功能在地质时期与气候变化有关的主要进化创新。描述支撑韧皮部多样化的遗传创新结合对活物种、化石和基因的研究,我将得出关于韧皮部的进化结论,这是单靠这些证据无法实现的,标志着我们对韧皮部进化的理解发生了一步变化。这项研究的影响将是阐明这一重要植物组织的进化,并帮助了解韧皮部的结构和功能如何与大气CO2水平联系在一起。因此,该研究金的研究结果对于预测活植物的韧皮部结构,包括经济上重要的作物和树种,在未来50至100年内可能对人为气候变化造成的大气CO2上升作出反应至关重要。生物科学学院(SBS)是研究结构,功能和遗传变化的世界领导者,这些变化是不同谱系中复杂植物性状的基础。此外,我的奖学金将大大受益于与地球科学学院的古生物学小组以及两个项目合作伙伴组织的收藏品的合作;苏格兰国家博物馆(NMS)的化石植物和爱丁堡皇家植物园(RBGE)的活体收藏品。特别是,NMS包含了一个独特的和未开发的集合,将是必不可少的我提出的研究。总而言之,SBS的优良研究环境,地球科学学院古生物学的实力以及项目合作伙伴的收藏使其成为世界其他任何地方都无法成功完成的奖学金。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants.
在早期叶植物中,叶子和孢子囊以罕见的非斐波那契螺旋形式发育。
  • DOI:
    10.1126/science.adg4014
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Turner HA
  • 通讯作者:
    Turner HA
New views on old seeds: a new description of Genomosperma sheds light on early seed evolution.
对古老种子的新观点:对基因子植物的新描述揭示了早期种子的进化。
  • DOI:
    10.1111/nph.16875
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hetherington AJ
  • 通讯作者:
    Hetherington AJ
An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert.
  • DOI:
    10.7554/elife.69447
  • 发表时间:
    2021-08-24
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Hetherington AJ;Bridson SL;Lee Jones A;Hass H;Kerp H;Dolan L
  • 通讯作者:
    Dolan L
The Making of Plant Armor: The Periderm.
  • DOI:
    10.1146/annurev-arplant-102720-031405
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    23.9
  • 作者:
    Olga Serra;Ari Pekka Mähönen;Alexander J. Hetherington;L. Ragni
  • 通讯作者:
    Olga Serra;Ari Pekka Mähönen;Alexander J. Hetherington;L. Ragni
Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modified leaves.
  • DOI:
    10.1038/s41598-020-78171-y
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hetherington AJ;Emms DM;Kelly S;Dolan L
  • 通讯作者:
    Dolan L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Hetherington其他文献

In vivo behavior of acrylic bone cement in total hip arthroplasty.
丙烯酸骨水泥在全髋关节置换术中的体内行为。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    14
  • 作者:
    M. Ries;Ernest Young;Laila Al;Philip Goldstein;Alexander Hetherington;T. Petrie;L. Pruitt
  • 通讯作者:
    L. Pruitt

Alexander Hetherington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Hetherington', 18)}}的其他基金

Uncovering the evolutionary history and significance of Fibonacci spirals in vascular plants
揭示维管植物中斐波那契螺旋的进化历史和意义
  • 批准号:
    EP/Y037138/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
  • 批准号:
    MR/Y03399X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Fellowship

相似海外基金

NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    NE/Y005686/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
  • 批准号:
    MR/Y03399X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Fellowship
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    2245629
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Rock erosion during cold climates of the next 1 million years: risk assessment for siting a UK Geological Disposal Facility.
未来一百万年寒冷气候期间的岩石侵蚀:英国地质处置设施选址的风险评估。
  • 批准号:
    2889450
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Studentship
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321341
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321342
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321343
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    2245628
  • 财政年份:
    2023
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Standard Grant
Sixty million years of seafloor alteration: spatial-temporal controls on volatile incorporation along a 1000 km transect of oceanic crust
六千万年的海底蚀变:沿 1000 公里洋壳横断面对挥发物合并的时空控制
  • 批准号:
    NE/X002012/1
  • 财政年份:
    2022
  • 资助金额:
    $ 138.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了