Spatio-temporal dynamics of mutation avoidance and antimicrobial resistance

突变避免和抗菌素耐药性的时空动态

基本信息

  • 批准号:
    MR/T021225/1
  • 负责人:
  • 金额:
    $ 128.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Spontaneous mutations are the basis of evolutionary innovation. They are also central to diseases in higher organisms and the root of some of the most pressing medical problems that we face: antimicrobial resistance and cancer. Mutations are usually detrimental for microbial cells. Therefore, cells have evolved to control mutations very tightly and DNA mutation rates are remarkably low. Yet mutations can be beneficial, for instance, a single point mutation in the right gene helps a cell to gain antibiotic resistance. Cells thus need mutations but just not too many. We need deep understanding of how the number of mutations fluctuate with the internal and external cellular environment. Addressing such dynamical aspects of mutations in the natural environment is vital for understanding the survival, adaptation and evolution of all cells. My previous work found that the rate of mutations is regulated by the environment associated with the cell-density: mutation rates decrease in dense populations up to 20-fold. Specifically, I discovered that crucial effectors of this environmental dependence of mutations are enzymes that enable cells to avoid mutations. In this Fellowship I shall observe mutations in individual microbes growing in their native environment, community. Only studying individual cells growing in a dense community will give us an understanding of mutation dynamics in the real-world. To accomplish my aims, I will combine live fluorescence microscopy, microfluidics, statistical modelling and interact with outstanding researchers from other disciplines. I shall use the Escherichia coli K-12 model system and observe mobility of DNA repair proteins, which will enable me to count mutations in individual cells. This will tell us about cell-to-cell variation in the number of mutations and how such a heterogeneity depends on micro-environments generated in the community. I will also quantify the molecular diffusion of mutation avoidance protein MutT in these micro-environments. I will establish the potential link between MutT dynamics and downstream processes involved in the generation of mutations. I will do all this not only in cells during normal community growth, but also in cells that survive the antibiotic treatment without obtaining the genetic resistance. These tolerant and persistent cells start to divide again, after the antibiotic is removed. My study will determine dynamics of mutations in these survivor cells and how micro-environments, generated in the aftermath of the antibiotic treatment, affect their fate. Understanding factors that affect a cell's capability to avoid and repair mutations is essential to better predict the development of mutation-based resistance in microbial communities and to exploit that understanding to combat antimicrobial resistance.Generated knowledge, in years 1-4, will be used in years 5-7 to test how various drug candidates impact the mutation dynamics and fate of cells that survive antibiotic treatment. I will also apply these developed experimental approach to more clinically relevant strains.
自发突变是进化创新的基础。它们也是高等生物体疾病的核心,也是我们面临的一些最紧迫的医学问题的根源:抗菌素耐药性和癌症。突变通常对微生物细胞有害。因此,细胞已经进化到非常严格地控制突变,DNA突变率非常低。然而,突变可能是有益的,例如,正确基因的单点突变有助于细胞获得抗生素耐药性。因此,细胞需要突变,但不能太多。我们需要深入了解突变的数量如何随着细胞内外环境的变化而波动。解决自然环境中突变的这些动态方面对于理解所有细胞的生存、适应和进化至关重要。我之前的工作发现,突变的速度受到与细胞密度相关的环境的调节:在密度高的人群中,突变率最高可降低20倍。具体地说,我发现这种突变环境依赖性的关键效应物是使细胞避免突变的酶。在这个团契中,我将观察在它们的原生环境和群落中生长的单个微生物的突变。只有研究在密集群落中生长的单个细胞,才能让我们了解现实世界中的突变动态。为了实现我的目标,我将结合实时荧光显微镜、微流体学、统计建模,并与来自其他学科的杰出研究人员互动。我将使用大肠杆菌K-12模型系统,观察DNA修复蛋白的流动性,这将使我能够计算单个细胞中的突变。这将告诉我们突变数量的细胞间差异,以及这种异质性如何依赖于群落中产生的微环境。我还将量化突变避免蛋白MUT在这些微环境中的分子扩散。我将建立突变动力学和涉及突变产生的下游过程之间的潜在联系。我将不仅在正常社区生长的细胞中这样做,而且在那些在抗生素治疗中幸存下来但没有获得遗传耐药性的细胞中这样做。在抗生素被移除后,这些耐受和持久的细胞开始再次分裂。我的研究将确定这些存活细胞中突变的动态,以及抗生素治疗后产生的微环境如何影响它们的命运。了解影响细胞避免和修复突变能力的因素对于更好地预测微生物群落中基于突变的耐药性的发展并利用这种了解来对抗抗菌素耐药性是至关重要的。1-4年中的遗传知识将在5-7年中用于测试各种候选药物如何影响抗生素治疗后存活的细胞的突变动态和命运。我还将把这些开发的实验方法应用于更多临床相关的菌株。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Working together to control mutation: how collective peroxide detoxification determines microbial mutation rate plasticity
共同努力控制突变:集体过氧化物解毒如何决定微生物突变率可塑性
  • DOI:
    10.1101/2023.09.27.557722
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Green R
  • 通讯作者:
    Green R
Electrical Signalling in Three Dimensional Bacterial Biofilms Using an Agent Based Fire-Diffuse-Fire Model
使用基于代理的火-扩散-火模型的三维细菌生物膜中的电信号传导
  • DOI:
    10.1101/2023.11.17.567515
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carneiro Da Cunha Martorelli V
  • 通讯作者:
    Carneiro Da Cunha Martorelli V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rok Krasovec其他文献

Rok Krasovec的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
  • 批准号:
    82371454
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
  • 批准号:
    19ZR1415200
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
水稻种子际固有细菌的群落多样性及其瞬时演替研究
  • 批准号:
    30770069
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
  • 批准号:
    10568586
  • 财政年份:
    2023
  • 资助金额:
    $ 128.23万
  • 项目类别:
Elucidating spatio-temporal nuclear dynamics in 4D using state-of-the-art imaging in beating hearts
使用最先进的跳动心脏成像以 4D 方式阐明时空核动力学
  • 批准号:
    2888380
  • 财政年份:
    2023
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Studentship
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 128.23万
  • 项目类别:
Spatio-temporal dynamics analysis of cell death induction due to disruption of biometal homeostasis and its application to radiotherapy
生物金属稳态破坏诱导细胞死亡的时空动力学分析及其在放射治疗中的应用
  • 批准号:
    22H03740
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatio-temporal dynamics of immune and non-immune islet injury in Type 1 Diabetes
1 型糖尿病免疫和非免疫胰岛损伤的时空动态
  • 批准号:
    467723
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Operating Grants
Study on the spatio-temporal dynamics of calcium and glutamate coupling at sensory ribbon synapses.
感觉带突触钙和谷氨酸耦合的时空动力学研究。
  • 批准号:
    22K06482
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatio-temporal dynamics of deterioration of marine microplastics
海洋微塑料劣化的时空动态
  • 批准号:
    22H03718
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Epidemiological research on spatio-temporal dynamics of respiratory infectious diseases and it's projection
呼吸道传染病时空动态流行病学研究及预测
  • 批准号:
    22K17410
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
  • 批准号:
    RGPIN-2018-04371
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Discovery Grants Program - Individual
Innovative technology for controlled synthesis of reactive species by elucidating spatio-temporal dynamics of plasma gas-liquid interfacial reactions
通过阐明等离子体气液界面反应的时空动力学来控制活性物质合成的创新技术
  • 批准号:
    22H04947
  • 财政年份:
    2022
  • 资助金额:
    $ 128.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了