Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
基本信息
- 批准号:10568586
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdoptionAlgorithmsAlzheimer&aposs DiseaseAutomobile DrivingBiogenesisBiologyBiophysicsCardiomyopathiesCell VolumesCellsCellular Metabolic ProcessCellular biologyCommunitiesComputer softwareDataData AnalysesData SetDefectDevelopmentDiffusionDiseaseEquilibriumEventEvolutionFluorescenceFluorescence MicroscopyFour-dimensionalGoalsGrantGraphHeartHeart DiseasesHomeostasisImageImage AnalysisImaging technologyImpairmentKidney BeanKnowledgeLeadLightLinkLocationMalignant NeoplasmsMeasuresMethodologyMethodsMicroscopyMissionMitochondriaModelingModernizationMorphologyNerve DegenerationNeurosciencesOrganellesPolymersProcessPublic HealthReadingResearchResearch PersonnelResolutionRoleSeizuresShapesStressStrokeTestingTextbooksTimeUnited States National Institutes of HealthVertebral columnWorkcell motilitycomputerized toolsdata modelingdeep learningdeep neural networkexperimental analysisfluorescence imaginghuman diseaseimage processingmicroscopic imagingmodels and simulationneural network architecturenovel therapeuticsparticlesegmentation algorithmsimulationsoftware developmentspatiotemporalterabytetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Mitochondria provide 90% of our energy; defects in mitochondria lead to a wide range of diseases including
seizures, stroke, heart disease, neurodegeneration, and cancer. Far from their static kidney-bean shaped
depiction in many textbooks, mitochondria form a dynamic three-dimensional network that spans the entire
volume of the cell. This network undergoes continuous remodeling through fission and fusion, motility, biogenesis
and clearance. Under stress or disease conditions, the mitochondrial network fragments and changes its
dynamic equilibrium. Understanding this equilibrium, and its changes and adjustments to disease, is an
archetypical question in quantitative cellular organelle biology. The dynamic mitochondrial network has so far
evaded experimental interrogation and modeling as mitochondria were too small and too fast for volumetric
fluorescence microscopy. Fortunately, recent advances in imaging technology, namely lattice light-sheet
microscopy (LLSM), have changed that. Substantial preliminary data in this application supports the working
hypothesis that a combination of quantitative LLSM image processing, and particle based spatial modeling can
succeed in creating the first four-dimensional (4D) spatiotemporal model of the mitochondrial network. The goal
of the proposed work is to elucidate the fundamental biophysical principles of mitochondrial network
homeostasis. We have outlined three aims that will enable us to close this knowledge gap.
Aim 1 will test the hypothesis that deep learning-based mitochondria segmentation will demonstrate more
accurate extraction of the 4D mitochondrial network from LLSM data as compared to traditional methods. New
deep neural network architectures will be developed to test this hypothesis. It is expected that a tool will be
delivered that generalizes across diverse imaging conditions and diverse mitochondrial form and function
impaired conditions.
Aim 2 will test the hypothesis that graph-based topological linking will demonstrate the first temporal tracking of
the 4D mitochondrial network. New linear assignment problem-based algorithms will be developed to precisely
track the mitochondrial network backbone as well as its fission/fusion events. It is expected that a tool will be
delivered that can track the mitochondrial network in a variety of imaging conditions and mitochondrial form and
function impaired conditions.
Aim 3 will test the hypothesis that morphology, dynamics, and function of the mitochondrial network are linked
and can be predicted. A new particle-based polymer simulation model will be developed based on 4D graph
temporal analysis of experimental data. It is expected that the first 4D spatio-temporal model of the mitochondrial
network will be developed that can predict form and function observables and their time evolution from first
principles.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes Schoeneberg其他文献
Johannes Schoeneberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johannes Schoeneberg', 18)}}的其他基金
Decode Mitochondrial Morphology Dynamics to Predict Cell Fate Decisions
解码线粒体形态动力学以预测细胞命运决策
- 批准号:
10473200 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




