MICA: Clinical trial estimands: from definition to estimation

MICA:临床试验估计值:从定义到估计

基本信息

项目摘要

Randomised clinical trials represent the gold standard approach for testing whether new treatments for diseases work better than existing treatments and quantifying the magnitude of the benefit. In principle the analysis of such trials is simple - one compares the chosen outcome measure of patients in one group with the patients in the other group. In practice a number of complications may arise which make this comparison difficult to interpret or impossible even to calculate. One example is trials in which patients may change from the treatment that they were randomly assigned to receive during the follow-up period, either to the alternative treatment, no treatment at all, or they may start taking additional treatment(s). A second example is in trials which aim to compare (for example) cholesterol treatments in terms of their effects on death due to cardiovascular disease. This comparison is complicated by the fact that some patients may die of other causes, such as cancer. In a simple analysis comparing the number of patients who died due to cardiovascular disease between the two groups, a new treatment could for example reduce the chances of death due to cardiovascular disease, but only by virtue of the fact it increases death due to cancer. A third example is trials in cancer where interest lies in comparing treatments both in terms of their ability to prevent cancer recurrence and in terms of their adverse side effects, which may impact on the patient's quality of life. Any comparison of the treatments' effects on patient quality of life measures is complicated by the fact that inevitably such measures will be unavailable for some patients in each treatment group because they have died.In the context of such issues, in recent years there has been increased scrutiny from drug regulatory agencies regarding how clinical trials specify how they will handle such complications in their design and statistical analysis. Specifically, there is an increased demand for trials to clearly specify exactly what kind of effect of treatment they seek to quantify (the so called estimand) and to choose a method of statistical analysis that handles these issues in a sensible and plausible manner.The aim of this research is to investigate how such complications can best be handled using concepts and methods developed in the field of so called 'causal inference theory'. This theory offers a mathematical language to precisely describe what we mean by the effect of treatment in the presence of complicating factors such as the ones described earlier. Moreover, a large range of statistical methods have been developed for estimating treatment effects defined using these concepts, under different assumptions. This research will use causal inference theory to precisely define treatment effects (estimands) in the presence of the various issues described earlier. It will then investigate which statistical methods developed in causal inference theory are best suited for application to the analysis of clinical trial data.The outputs of this research will help statisticians involved in clinical trials to use causal inference concepts and language to clearly specify the treatment effect which their trial intends to estimate. It will give them guidance and recommendations as to which statistical methods they can use to estimate such effects. The research will also produce software to implement the new statistical methods to enable trial statisticians to use the methods in their trials. Together these outputs will mean that patients can be offered more meaningful and accurate measures of expected treatment effects and that clinicians can make more informed decisions about patient care. The research will enable drug regulators and payer authorities to make fairer comparisons between treatments in regards their efficacy, safety, and cost-effectiveness, leading to improved decisions about which treatments to license and make available to patients.
随机临床试验代表了测试疾病的新治疗方法是否比现有治疗方法更有效并量化益处大小的金标准方法。原则上,此类试验的分析很简单--将一组患者的选定结果指标与另一组患者的结果指标进行比较。在实践中,可能会出现一些复杂情况,使这种比较难以解释,甚至无法计算。一个例子是患者可能从随访期间随机分配接受的治疗改变为替代治疗,根本不治疗,或者他们可能开始接受其他治疗的试验。第二个例子是旨在比较(例如)胆固醇治疗对心血管疾病死亡的影响的试验。这种比较由于一些患者可能死于其他原因(如癌症)而变得复杂。在一项简单的分析中,比较了两组因心血管疾病死亡的患者人数,例如,一种新的治疗方法可以减少因心血管疾病死亡的机会,但这仅仅是因为它增加了因癌症死亡的机会。第三个例子是癌症试验,其中感兴趣的是比较治疗方法预防癌症复发的能力和可能影响患者生活质量的不良副作用。由于每个治疗组中的一些患者不可避免地会因为死亡而无法获得这些指标,因此任何治疗对患者生活质量指标影响的比较都变得复杂。在这种情况下,近年来药品监管机构对临床试验如何在设计和统计分析中指定如何处理这些并发症进行了越来越多的审查。具体地说,越来越多的临床试验要求明确地说明他们所寻求的治疗效果(所谓的被估量),并选择一种统计分析方法,以合理和合理的方式处理这些问题。本研究的目的是调查如何使用所谓的“因果推理理论”领域中发展起来的概念和方法来最好地处理这些并发症。这一理论提供了一种数学语言来精确地描述我们所说的治疗效果在复杂因素存在的情况下的含义,比如前面描述的那些。此外,在不同的假设下,已经开发了大量的统计方法来估计使用这些概念定义的治疗效果。这项研究将使用因果推理理论,以精确地定义治疗效果(被估量)的各种问题的存在之前所描述的。本研究的成果将有助于临床试验中的统计学家使用因果推理的概念和语言来明确说明他们的试验所要估计的治疗效果。它将为他们提供指导和建议,说明他们可以使用哪些统计方法来估计这种影响。该研究还将制作软件来实施新的统计方法,使试验统计学家能够在试验中使用这些方法。这些输出将意味着可以为患者提供更有意义和更准确的预期治疗效果指标,临床医生可以对患者护理做出更明智的决定。这项研究将使药品监管机构和支付机构能够在疗效、安全性和成本效益方面对治疗方法进行更公平的比较,从而改善有关许可和向患者提供哪些治疗方法的决策。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weighted Hazard Ratio Estimation for Delayed and Diminishing Treatment Effect
治疗效果延迟和减弱的加权风险比估计
Comment on Oberman & Vink: Should we fix or simulate the complete data in simulation studies evaluating missing data methods?
评论奥伯曼
Multiple Imputation and its Application
  • DOI:
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Carpenter;M. Kenward
  • 通讯作者:
    J. Carpenter;M. Kenward
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Bartlett其他文献

Calculating Software Complexity Using the Halting Problem
使用停止问题计算软件复杂性
  • DOI:
    10.33014/isbn.0975283863.6
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Bartlett
  • 通讯作者:
    Jonathan Bartlett
Generalized Information
一般信息
Erratum: Management Guidelines for Metal-on-metal Hip Resurfacing Arthroplasty: A Strategy on Followup
  • DOI:
    10.4103/0019-5413.214230
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Naoki Nakano;Andrea Volpin;Jonathan Bartlett;Vikas Khanduja
  • 通讯作者:
    Vikas Khanduja
Causal Capabilities of Teleology and Teleonomy in Life and Evolution
  • DOI:
    10.31577/orgf.2023.30301
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Jonathan Bartlett
  • 通讯作者:
    Jonathan Bartlett
Random with Respect to Fitness or External Selection? An Important but Often Overlooked Distinction
关于适应度或外部选择的随机性?
  • DOI:
    10.1007/s10441-023-09464-8
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jonathan Bartlett
  • 通讯作者:
    Jonathan Bartlett

Jonathan Bartlett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Bartlett', 18)}}的其他基金

MICA: Clinical trial estimands: from definition to estimation
MICA:临床试验估计值:从定义到估计
  • 批准号:
    MR/T023953/1
  • 财政年份:
    2020
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Research Grant
Methods for handling missing data and covariate measurement error in individual participant data meta-analysis
个体参与者数据荟萃分析中处理缺失数据和协变量测量误差的方法
  • 批准号:
    MR/K02180X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Fellowship

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

MONALISA: A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis
MONALISA:一项 SIOPEN 实用临床试验,通过液体活检监测神经母细胞瘤复发 敏感性分析
  • 批准号:
    10103126
  • 财政年份:
    2024
  • 资助金额:
    $ 23.35万
  • 项目类别:
    EU-Funded
A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis (MONALISA)
SIOPEN 通过液体活检敏感性分析 (MONALISA) 监测神经母细胞瘤复发的实用临床试验
  • 批准号:
    10110442
  • 财政年份:
    2024
  • 资助金额:
    $ 23.35万
  • 项目类别:
    EU-Funded
Phase I/II clinical trial of autologous T cell gene therapy to treat X-linked lymphoproliferative disease (XLP)
自体T细胞基因疗法治疗X连锁淋巴增殖性疾病(XLP)的I/II期临床试验
  • 批准号:
    MR/Y019458/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Research Grant
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Collaborative R&D
Applying co-production to enhance Ontario's clinical trial landscape
应用联合生产来增强安大略省的临床试验前景
  • 批准号:
    484616
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Fellowship Programs
Core B: Clinical Trials Core
核心 B:临床试验核心
  • 批准号:
    10554476
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
  • 批准号:
    10655872
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
Toward Clinical Trial: AXL-STAT3 Targeting of Lung Tumor Microenvironments
走向临床试验:AXL-STAT3 靶向肺肿瘤微环境
  • 批准号:
    10660429
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
A randomized clinical trial of client-centered care coordination to improve pre-exposure prophylaxis use for Black men who have sex with men
一项以客户为中心的护理协调的随机临床试验,以改善男男性行为黑人的暴露前预防使用
  • 批准号:
    10762186
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
ISimcha Technology Platform for Recruiting a Diverse Population of Older Adults into Clinical Trials
ISimcha 技术平台,用于招募不同的老年人群进行临床试验
  • 批准号:
    10761602
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了