Methods for handling missing data and covariate measurement error in individual participant data meta-analysis
个体参与者数据荟萃分析中处理缺失数据和协变量测量误差的方法
基本信息
- 批准号:MR/K02180X/1
- 负责人:
- 金额:$ 35.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent decades there has been a concerted drive towards ensuring medicine is evidence based, meaning that decisions about patient care and public health are made in light of the current best available evidence. Central to establishing what constitutes the best available evidence in regards to a particular clinical or public health question is the process of evidence synthesis. For clinical questions which can be numerically quantified, the primary tool for synthesizing evidence is meta-analysis, which involves taking the results from previous studies and combining them to give a single summary estimate of the quantity of interest.The gold standard approach to meta-analysis involves collating the individual participant data (IPD) from all of the previously conducted relevant studies and analysing the resulting combined dataset. Pooling the individual level data confers a number of advantages compared to the traditional meta-analysis approach which involves combining the overall results of studies (as opposed to analysing their original, individual level data). These advantages include the ability to make statistical adjustments for a consistent set of variables, exploration of whether treatment effects vary between different groups of patients, and the ability to investigate the shape of relationships between variables.However, there are a number of issues which threaten the potential of IPD meta-analysis. Principal among these are issues caused by missing data and measurement error. Missing data occur for two reasons in IPD meta-analyses. The first is when some studies did not collect data on one or more variables which are of interest, such that the values of these variables are missing for all participants in these studies. The second occurs when, for a variety of reasons, some participants have missing values despite the fact the study intended to collect the variable. Missing data cause results to be less precise and possible biased. Measurement error occurs when variables of interest can only be measured imprecisely. If ignored, measurement error also causes biases in results.The proposed research seeks to develop new statistical methods to deal with these two issues. By doing so, they will enable researchers to obtain more precise and less biased estimates from IPD meta-analyses, thereby giving more accurate answers to important clinical and public health questions. New methods will be published in scientific journals, and methods implemented into statistical software packages to enable them to be used by researchers. This will help enable medical practitioners and public health experts to base their decisions and policies on the best available evidence, thus improving health outcomes for patients and the population more generally.The work will be conducted by the Fellowship applicant.
近几十年来,人们一直在努力确保医学以证据为基础,这意味着有关患者护理和公共卫生的决定是根据目前最好的证据做出的。确定什么是关于特定临床或公共卫生问题的最佳可用证据的核心是证据合成过程。对于可以用数字量化的临床问题,合成证据的主要工具是荟萃分析,它涉及获取先前研究的结果并将其组合以给出感兴趣数量的单一汇总估计。荟萃分析的黄金标准方法涉及整理所有先前进行的相关研究的个体参与者数据(IPD)并分析所得的组合数据集。与传统的荟萃分析方法相比,汇集个人水平的数据具有许多优势,传统的荟萃分析方法涉及合并研究的总体结果(而不是分析其原始的个人水平数据)。这些优势包括能够对一组一致的变量进行统计调整,探索不同患者组之间的治疗效果是否不同,以及能够调查变量之间关系的形状。其中最主要的是数据缺失和测量误差造成的问题。在IPD荟萃分析中,数据缺失有两个原因。第一种是当一些研究没有收集一个或多个感兴趣的变量的数据时,这些变量的值对于这些研究中的所有参与者都是缺失的。第二种情况发生时,由于各种原因,一些参与者有缺失的值,尽管研究旨在收集变量。缺失数据会导致结果不太精确,并可能存在偏倚。测量误差发生在感兴趣的变量只能不精确地测量时。如果忽略测量误差,测量误差也会导致结果的偏差,本研究试图开发新的统计方法来处理这两个问题。通过这样做,他们将使研究人员能够从IPD荟萃分析中获得更精确和更少偏差的估计,从而为重要的临床和公共卫生问题提供更准确的答案。新方法将在科学期刊上发表,并将这些方法纳入统计软件包,供研究人员使用。这将有助于医务人员和公共卫生专家根据现有的最佳证据作出决定和制定政策,从而改善病人和广大民众的健康状况。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple imputation of covariates by substantive-model compatible fully conditional specification
- DOI:10.1177/1536867x1501500206
- 发表时间:2015-01-01
- 期刊:
- 影响因子:4.8
- 作者:Bartlett, Jonathan W.;Morris, Tim P.
- 通讯作者:Morris, Tim P.
Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration
协变量测量误差的贝叶斯校正:频率主义评估以及与回归校准的比较
- DOI:10.48550/arxiv.1603.06284
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Bartlett J
- 通讯作者:Bartlett J
Methodology for multiple imputation for missing data in electronic health record data
电子健康记录数据中缺失数据的多重插补方法
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Bartlett JW
- 通讯作者:Bartlett JW
Asymptotically Unbiased Estimation of Exposure Odds Ratios in Complete Records Logistic Regression.
- DOI:10.1093/aje/kwv114
- 发表时间:2015-10-15
- 期刊:
- 影响因子:5
- 作者:Bartlett JW;Harel O;Carpenter JR
- 通讯作者:Carpenter JR
Missing covariates in competing risks analysis.
缺少竞争风险分析的协变量。
- DOI:10.1093/biostatistics/kxw019
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:Bartlett JW;Taylor JM
- 通讯作者:Taylor JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Bartlett其他文献
Calculating Software Complexity Using the Halting Problem
使用停止问题计算软件复杂性
- DOI:
10.33014/isbn.0975283863.6 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jonathan Bartlett - 通讯作者:
Jonathan Bartlett
Erratum: Management Guidelines for Metal-on-metal Hip Resurfacing Arthroplasty: A Strategy on Followup
- DOI:
10.4103/0019-5413.214230 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:1.100
- 作者:
Naoki Nakano;Andrea Volpin;Jonathan Bartlett;Vikas Khanduja - 通讯作者:
Vikas Khanduja
Causal Capabilities of Teleology and Teleonomy in Life and Evolution
- DOI:
10.31577/orgf.2023.30301 - 发表时间:
2023-08 - 期刊:
- 影响因子:0.5
- 作者:
Jonathan Bartlett - 通讯作者:
Jonathan Bartlett
Random with Respect to Fitness or External Selection? An Important but Often Overlooked Distinction
关于适应度或外部选择的随机性?
- DOI:
10.1007/s10441-023-09464-8 - 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Jonathan Bartlett - 通讯作者:
Jonathan Bartlett
Jonathan Bartlett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Bartlett', 18)}}的其他基金
MICA: Clinical trial estimands: from definition to estimation
MICA:临床试验估计值:从定义到估计
- 批准号:
MR/T023953/2 - 财政年份:2022
- 资助金额:
$ 35.45万 - 项目类别:
Research Grant
MICA: Clinical trial estimands: from definition to estimation
MICA:临床试验估计值:从定义到估计
- 批准号:
MR/T023953/1 - 财政年份:2020
- 资助金额:
$ 35.45万 - 项目类别:
Research Grant
相似国自然基金
我国家庭环境下的食品安全风险评价及综合干预研究
- 批准号:71103074
- 批准年份:2011
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Methods for Dealing with Missing Data in Drug Use and Addiction Research: The Use of Later-Retrieval in Ecological Momentary Assessment
改进处理药物使用和成瘾研究中缺失数据的方法:后期检索在生态瞬时评估中的应用
- 批准号:
10721443 - 财政年份:2023
- 资助金额:
$ 35.45万 - 项目类别:
Handling missing data in mental health research: A comparison of methods
处理心理健康研究中的缺失数据:方法比较
- 批准号:
575587-2022 - 财政年份:2022
- 资助金额:
$ 35.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
- 批准号:
2122074 - 财政年份:2021
- 资助金额:
$ 35.45万 - 项目类别:
Continuing Grant
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
- 批准号:
1953526 - 财政年份:2020
- 资助金额:
$ 35.45万 - 项目类别:
Continuing Grant
Methods for Handling Missing Data in Clinical Registries
临床登记中缺失数据的处理方法
- 批准号:
391681 - 财政年份:2018
- 资助金额:
$ 35.45万 - 项目类别:
Privacy-preserving methods and tools for handling missing data in distributed health data networks
用于处理分布式健康数据网络中丢失数据的隐私保护方法和工具
- 批准号:
9364071 - 财政年份:2017
- 资助金额:
$ 35.45万 - 项目类别:
Developing strategies for handling missing data in time-to-event analyses: Incorporating variable selection, variable transformation and time-varying
制定处理事件时间分析中缺失数据的策略:结合变量选择、变量转换和时变
- 批准号:
1922791 - 财政年份:2017
- 资助金额:
$ 35.45万 - 项目类别:
Studentship
HOD: Handling missing data and time-varying confounding in causal inference for observational event history data
HOD:处理观测事件历史数据因果推断中的缺失数据和时变混杂
- 批准号:
MR/M025152/2 - 财政年份:2017
- 资助金额:
$ 35.45万 - 项目类别:
Research Grant
HOD: Handling missing data and time-varying confounding in causal inference for observational event history data
HOD:处理观测事件历史数据因果推断中的缺失数据和时变混杂
- 批准号:
MR/M025152/1 - 财政年份:2015
- 资助金额:
$ 35.45万 - 项目类别:
Research Grant
Developing appropriate methods for handling missing data in health economic evaluation.
制定适当的方法来处理卫生经济评估中的缺失数据。
- 批准号:
MR/K02177X/1 - 财政年份:2013
- 资助金额:
$ 35.45万 - 项目类别:
Fellowship