HOD2: Instrumental Variable approaches for estimating heterogeneity of treatment effects to inform personalisation using electronic health records

HOD2:用于估计治疗效果异质性的工具变量方法,以使用电子健康记录为个性化提供信息

基本信息

项目摘要

Personalised medicine aims to provide the right treatment for the right patient at the right time. The evidence to inform personalised medicine can come from patient's electronic health records. However, there are several problems with using these data to compare outcomes for groups of patients who receive alternative treatments. First, the patients in the two groups may differ according to characteristics that are not measured (for example, the patient's frailty). Second, the extent to which an intervention leads to an improvement in the patients' outcome (or harm) may differ according to these unmeasured characteristics. Third, it is often unknown which patient groups benefit from which interventions. Methods for addressing these three problems are currently unavailable. This project will develop new methods that resolve these problems and provide more accurate estimates of the effectiveness and harms of new treatments that apply to individual patients. In particular, we will develop new methods that make more realistic assumptions. Instead of assuming that we know which patient groups benefit from which treatment, we will develop approaches that can learn from the data about which subgroups benefit from which treatment. We will examine how well these new methods work in practice by testing them as part of new studies. One of these studies will examine which patients benefit from emergency surgery for common acute conditions (e.g. appendicitis), and uses data from 1.5 million hospital episodes. The other study considers which patients with type 2 Diabetes Mellitus benefit from new, more costly oral treatments, and uses prescription data from General Practice databases for 25,000 patients. Our new methods will enable us to provide more accurate, relevant evidence about which interventions work best for which patients with these two conditions. We will provide a general framework for these methods that can be applied across many different disease areas and countries. To help future studies, we will provide tutorials and guidance on using and adapting these methods in different contexts. We will run short courses and workshops to assist those designing, analysing and interpreting studies that use electronic health records to inform treatment decisions for individual patients.
个性化医疗的目的是在正确的时间为正确的患者提供正确的治疗。为个性化医疗提供信息的证据可以来自患者的电子健康记录。然而,使用这些数据来比较接受替代治疗的患者组的结果存在几个问题。首先,两组患者可能会根据未被测量的特征(例如,患者的虚弱)而有所不同。其次,根据这些不可测量的特征,干预导致患者结局(或伤害)改善的程度可能会有所不同。第三,通常不知道哪些患者群体从哪些干预措施中受益。目前还没有解决这三个问题的方法。该项目将开发解决这些问题的新方法,并对适用于个别患者的新治疗方法的有效性和危害提供更准确的估计。特别是,我们将开发做出更现实假设的新方法。我们不是假设我们知道哪些患者群体从哪种治疗中受益,而是开发能够从数据中了解哪些亚组从哪种治疗中受益的方法。作为新研究的一部分,我们将通过测试这些新方法来检查它们在实践中的效果如何。其中一项研究将检查哪些患者从常见急性疾病(如阑尾炎)的紧急手术中受益,并使用150万例医院发作的数据。另一项研究考虑了哪些2型糖尿病患者受益于新的、更昂贵的口服治疗,并使用了25,000名患者的全科医生数据库中的处方数据。我们的新方法将使我们能够提供更准确、相关的证据,说明哪种干预措施对这两种疾病的患者最有效。我们将为这些方法提供一个可应用于许多不同疾病地区和国家的总体框架。为了帮助未来的研究,我们将提供在不同环境中使用和适应这些方法的教程和指导。我们将举办短期课程和讲习班,帮助那些设计、分析和解释使用电子健康记录为个别患者的治疗决定提供信息的研究。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery.
局部工具变量方法如何在不同强度的工具设置下执行?
  • DOI:
    10.1002/hec.4719
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Moler-Zapata S
  • 通讯作者:
    Moler-Zapata S
A Machine-Learning Approach for Estimating Subgroup- and Individual-Level Treatment Effects: An Illustration Using the 65 Trial.
  • DOI:
    10.1177/0272989x221100717
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Sadique, Zia;Grieve, Richard;Diaz-Ordaz, Karla;Mouncey, Paul;Lamontagne, Francois;O'Neill, Stephen
  • 通讯作者:
    O'Neill, Stephen
Local Instrumental Variable Methods to Address Confounding and Heterogeneity when Using Electronic Health Records: An Application to Emergency Surgery.
  • DOI:
    10.1177/0272989x221100799
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Moler-Zapata, Silvia;Grieve, Richard;Lugo-Palacios, David;Hutchings, A.;Silverwood, R.;Keele, Luke;Kircheis, Tommaso;Cromwell, David;Smart, Neil;Hinchliffe, Robert;O'Neill, Stephen
  • 通讯作者:
    O'Neill, Stephen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Grieve其他文献

Complier-average causal effects for multivariate outcomes: an instrumental variable approach with application to health economics
  • DOI:
    10.1186/1745-6215-16-s2-o44
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Karla DiazOrdaz;Angelo Franchini;Richard Grieve
  • 通讯作者:
    Richard Grieve
Correction to: Impact on mortality of prompt admission to critical care for deteriorating ward patients: an instrumental variable analysis using critical care bed strain
  • DOI:
    10.1007/s00134-018-5254-1
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    21.200
  • 作者:
    Steve Harris;Mervyn Singer;Colin Sanderson;Richard Grieve;David Harrison;Kathryn Rowan
  • 通讯作者:
    Kathryn Rowan
USE OF EVIDENCE-BASED PREVENTIVE MEDICAL THERAPIES 1-3 YEARS POST-MYOCARDIAL INFARCTION IN THE PROSPECTIVE GLOBAL TIGRIS REGISTRY
  • DOI:
    10.1016/s0735-1097(19)30777-6
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Dirk Westermann;David Brieger;Timothy Collier;Stuart J. Pocock;Mauricio G. Cohen;Shaun G. Goodman;Christopher B. Granger;Richard Grieve;Jose C. Nicolau;Tabassome Simon;Satoshi Yasuda;Gunnar Brandrup-Wognsen;Kirsten L. Rennie;Karolina Andersson Sundell;Ji Yan Chen
  • 通讯作者:
    Ji Yan Chen
Cost-Effectiveness and Resource Allocation (CERA) – directions for the future
  • DOI:
    10.1186/1478-7547-7-14
  • 发表时间:
    2009-07-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Rob Baltussen;Arnab Acharya;Kathryn Antioch;Dan Chisholm;Richard Grieve;Joses Kirigia;Tessa Tan Torres-Edejer;Damian G Walker;David Evans
  • 通讯作者:
    David Evans
189 Does living in a rural area reduce access to cancer treatment more for ethnic minorities? A population-based study on treatment for early stage non-small-cell lung cancer (NSCLC)
居住在农村地区是否会更多地减少少数民族获得癌症治疗的机会?一项基于人群的早期非小细胞肺癌(NSCLC)治疗研究
  • DOI:
    10.1016/j.lungcan.2025.108298
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Eva Kagenaar;David Lugo-Palacios;Richard Grieve;Andrew Hutchings;Ajay Aggarwal;Stephen O'Neill;Bernard Rachet;Corinne Faivre-Finn;John Edwards
  • 通讯作者:
    John Edwards

Richard Grieve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Grieve', 18)}}的其他基金

Improving analytical methods for reducing selection bias in health economic evaluation
改进分析方法以减少卫生经济评估中的选择偏差
  • 批准号:
    ES/G00188X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Research Grant
DEVELOPING APPROPRIATE ANALYTICAL METHODS FOR COST-EFFECTIVENESS ANALYSES THAT USE CLUSTER RANDOMISED TRIALS
开发适当的分析方法以使用整群随机试验进行成本效益分析
  • 批准号:
    G0802321/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Research Grant

相似海外基金

Causal effects of physical activity on health outcomes including dementia among older adults: a proposal of a new instrumental variable
体力活动对健康结果(包括老年人痴呆症)的因果影响:新工具变量的提议
  • 批准号:
    20K18931
  • 财政年份:
    2020
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of electroconvulsive therapy on suicide in geriatrics patients with major depressive disorder: a nationwide cohort study using propensity score matching and instrumental variable analysis
电休克治疗对患有重度抑郁症的老年患者自杀的影响:一项使用倾向评分匹配和工具变量分析的全国性队列研究
  • 批准号:
    9886271
  • 财政年份:
    2019
  • 资助金额:
    $ 64.68万
  • 项目类别:
Evaluating fluid resuscitation in sepsis using physician preferences as an instrumental variable
使用医生偏好作为工具变量评估脓毒症的液体复苏
  • 批准号:
    383328
  • 财政年份:
    2017
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Studentship Programs
Can instrumental variable analysis overcome confounding by indication? Validation of physicians' prescribing preferences as instrumental variables.
工具变量分析可以克服指示的混淆吗?
  • 批准号:
    MR/N01006X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Research Grant
New Nonparametric Methods in Instrumental Variable Models
工具变量模型中的新非参数方法
  • 批准号:
    251751687
  • 财政年份:
    2014
  • 资助金额:
    $ 64.68万
  • 项目类别:
    Research Fellowships
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8028216
  • 财政年份:
    2011
  • 资助金额:
    $ 64.68万
  • 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8444529
  • 财政年份:
    2011
  • 资助金额:
    $ 64.68万
  • 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8305510
  • 财政年份:
    2011
  • 资助金额:
    $ 64.68万
  • 项目类别:
Instrumental Variable Methods for Longitudinal Discrete Data
纵向离散数据的工具变量法
  • 批准号:
    8037491
  • 财政年份:
    2010
  • 资助金额:
    $ 64.68万
  • 项目类别:
Genetic instrumental variable studies of maternal risk behaviors for oral clefts
口裂母亲危险行为的遗传工具变量研究
  • 批准号:
    8308946
  • 财政年份:
    2010
  • 资助金额:
    $ 64.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了