Printing the future of space telescopes
打印太空望远镜的未来
基本信息
- 批准号:MR/T042230/1
- 负责人:
- 金额:$ 144.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Space telescopes, for either Earth, Solar System, or astronomical observations, are vital for mapping the effects of climate change and understanding the origins and evolution of the Universe. The telescope mirrors that collect light and relay it to the detectors are one of the most critical components - only if these are of the highest quality can we obtain the best possible observations.Due to the time and expertise required to create a bespoke piece of precision hardware, mirrors in space telescopes are often the single most expensive item of the system. The mirror shape typically needs to be accurate to less than the width of a human hair and smooth on the scale of DNA (i.e. nanometre scale). Moreover, to reduce launch costs, mirrors often need to be lightweight structures, leading to a further increase in time and cost. The fabrication of the mirror is just the first challenge, even if optically perfect, poor mounting of a mirror can render it unusable by creating distortions in its shape.My proposed research focusses on a possible disruptive technology for future fabrication of space optics. Additive manufacture (AM; 3D printing) is the creation of a 3D object layer-by-layer, where each layer is added on the previous. This manufacturing process is `additive' in comparison to traditional methods where material is removed from a solid (mill, drill or lathe), or where material is set within a mould (casting, forging).A huge advantage of AM is the increase in potential geometries available to design engineers. Traditional methods constrain the possible geometries via the tools and access needed to remove material from the object/mould. In contrast, AM requires no extra tooling to create intricate structures beyond the laser (or nozzle) that prints each layer. The freedom of building a part via a layered approach significantly increases the possible geometries and design options - essentially, the designer gains structural complexity for free! AM has the potential to revolutionise the production of lightweight, bespoke mirrors. The increase in the design space allows lightweight structures to be optimised for their specific functions, creating geometries that are impossible via traditional methods. This promises lighter and more rigid mirrors than those currently available. Even more powerful could be the ability to print a mirror and its mount as one structure, thus reducing deformations caused by interfaces and fasteners. In addition, the cost and time required to fabricate such lightweight mirrors would also decrease, promoting the affordability of imaging from space.Despite the advantages of AM in mirror fabrication, there are two key research challenges that are the focus of one strand of my research. First, with the increase in design space, how is the ideal lightweight structure best determined? Options include regular and non-regular lattices, computer optimisations, and adapting structures from nature - identifying the best approach for a given mirror is a difficult design problem. Second, can suitable materials and structural properties for mirror fabrication be adapted for use by AM? Mirror fabrication requires a unique set of material properties and characteristics to generate the best surfaces. AM has not been optimised for this application to date, and the optimal parameters and materials require detailed research.The second element of my research focusses on establishing AM as a go-to technique for the future fabrication of flight hardware. This is arguably the biggest challenge facing AM components designed for space. Due to expensive launch costs, all space hardware needs to be qualified (i.e. approved for operation) prior to launch and this process of qualification is expensive, time consuming and nurtures a resistance for change. Therefore, I will work towards space qualification of AM components, to demonstrate experimentally the benefit of AM for future flight hardware.
无论是用于地球、太阳系还是天文观测的太空望远镜,对于绘制气候变化的影响和了解宇宙的起源和演化都至关重要。望远镜的反射镜收集光线并将其传递到探测器,是最关键的部件之一,只有具备最高质量的反射镜,我们才能获得最佳观测效果。由于制造定制的精密硬件需要时间和专业知识,太空望远镜中的反射镜通常是系统中最昂贵的部件。镜面形状通常需要精确到小于人类头发的宽度,并且在DNA尺度(即纳米尺度)上平滑。此外,为了降低发射成本,反射镜通常需要是轻质结构,导致时间和成本的进一步增加。镜子的制造只是第一个挑战,即使光学完美,镜子的安装不良也会导致其形状扭曲而无法使用。我建议的研究重点是未来空间光学制造的可能破坏性技术。增材制造(AM; 3D打印)是逐层创建3D对象,其中每一层都添加到前一层上。与传统方法相比,这种制造过程是“添加剂”的,传统方法是从固体中去除材料(铣削、钻孔或车床),或者将材料放置在模具中(铸造、锻造)。增材制造的一个巨大优势是增加了设计工程师可用的潜在几何形状。传统方法通过从物体/模具移除材料所需的工具和入口来限制可能的几何形状。相比之下,AM不需要额外的工具来创建打印每一层的激光(或喷嘴)之外的复杂结构。通过分层方法构建零件的自由度显著增加了可能的几何形状和设计选项-基本上,设计师免费获得了结构复杂性!AM有可能彻底改变轻质定制镜子的生产。设计空间的增加使轻质结构能够针对其特定功能进行优化,创造出传统方法无法实现的几何形状。这将使镜子比现有的更轻、更硬。更强大的是能够将镜子及其安装件打印为一个结构,从而减少由接口和紧固件引起的变形。此外,制造这种轻质反射镜所需的成本和时间也将减少,促进从太空成像的可负担性。尽管AM在反射镜制造中具有优势,但有两个关键的研究挑战是我研究的一个重点。首先,随着设计空间的增大,理想的轻量化结构如何确定最佳?选择包括规则和非规则网格,计算机优化,以及从自然界中调整结构-为给定的镜子确定最佳方法是一个困难的设计问题。第二,合适的材料和结构性能的镜子制造是适应使用的AM?镜面制造需要一组独特的材料属性和特性来生成最佳表面。到目前为止,增材制造还没有针对这种应用进行优化,最佳参数和材料需要详细的研究。我研究的第二个要素是将增材制造作为未来飞行硬件制造的一项技术。这可以说是为太空设计的AM组件面临的最大挑战。由于昂贵的发射成本,所有空间硬件都需要在发射前经过鉴定(即批准运行),而这一鉴定过程既昂贵又耗时,而且会造成对变革的抵制。因此,我将致力于AM组件的空间鉴定,以实验证明AM对未来飞行硬件的好处。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a modular system to provide confidence in porosity analysis of additively manufactured components using x-ray computed tomography
- DOI:10.1088/1361-6501/ad1670
- 发表时间:2024-01
- 期刊:
- 影响因子:2.4
- 作者:Y. Chahid;C. Packer;A. Tawfik;J. Keen;N. Brewster;M. Beardsley;K. Morris;P. Bills;
- 通讯作者:Y. Chahid;C. Packer;A. Tawfik;J. Keen;N. Brewster;M. Beardsley;K. Morris;P. Bills;
Handbook of X-ray and Gamma-ray Astrophysics
X射线和伽马射线天体物理学手册
- DOI:10.1007/978-981-16-4544-0_11-1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Atkins C
- 通讯作者:Atkins C
Lightweight, aluminum, mirror design optimization for conventional and additive manufacturing processes
针对传统和增材制造工艺的轻质铝制镜子设计优化
- DOI:10.1117/12.2627757
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Paenoi J
- 通讯作者:Paenoi J
Design, manufacture and characterisation of X-ray Computer Tomography (XCT) calibration artefacts for space hardware qualification
用于空间硬件鉴定的 X 射线计算机断层扫描 (XCT) 校准制品的设计、制造和表征
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Keen J.
- 通讯作者:Keen J.
From design to evaluation of an additively manufactured, lightweight, deployable mirror for Earth observation
用于地球观测的增材制造、轻型、可展开镜子的从设计到评估
- DOI:10.1117/12.2677303
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Westsik M
- 通讯作者:Westsik M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Atkins其他文献
Carolyn Atkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Securing the Future of Electric Field Measurements in Space Physics
职业:确保空间物理电场测量的未来
- 批准号:
2338825 - 财政年份:2024
- 资助金额:
$ 144.7万 - 项目类别:
Continuing Grant
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
- 批准号:
10715891 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
- 批准号:
10731224 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
Defining single-channel paracellular (tight junction) conductances using nanotechnology
使用纳米技术定义单通道旁细胞(紧密连接)电导
- 批准号:
10593421 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
School-Partnered Collaborative Care (SPACE) for Pediatric Type 1 Diabetes
针对儿童 1 型糖尿病的学校合作协作护理 (SPACE)
- 批准号:
10640614 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
Non-invasive vagus nerve stimulation to mitigate subarachnoid hemorrhage induced inflammation
无创迷走神经刺激减轻蛛网膜下腔出血引起的炎症
- 批准号:
10665166 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
Molecular and functional characterization of type I and II vestibular hair cells in adult mice
成年小鼠 I 型和 II 型前庭毛细胞的分子和功能特征
- 批准号:
10749188 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别:
The role of extracellular vesicles in keratoconus pathogenesis
细胞外囊泡在圆锥角膜发病机制中的作用
- 批准号:
10595121 - 财政年份:2023
- 资助金额:
$ 144.7万 - 项目类别: