Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
基本信息
- 批准号:10572855
- 负责人:
- 金额:$ 8.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureAtlasesBig DataBiologicalCRISPR/Cas technologyCaenorhabditis elegansCell Differentiation processCell modelCellsChromatinChromiumCollaborationsCuesDataData SetDevelopmentDevelopment PlansDifferential EquationDigit structureEmbryoEmbryonic DevelopmentEnvironmentEpigenetic ProcessFutureGeneticGenomicsHematopoiesisHematopoieticHematopoietic stem cellsHourHumanKineticsLabelLearningLinkMachine LearningMaintenanceMammalian CellMapsMeasurementMeasuresMentorsMetabolicMethodsMicroscopyModelingModernizationMusOrganic SynthesisOrganogenesisPancreasPaperParacrine CommunicationPatternPhasePositioning AttributePredictive FactorProteomicsPublishingRNARegenerative MedicineResearchResearch PersonnelSideSignal TransductionStatistical Data InterpretationSumSystemSystems BiologyTechnologyTestingTimeTracerTrainingUniversitiesWorkbiological systemscareer developmentdeep learningdynamic systemexperimental studyfield studyimprovedin silicoin situ sequencingin vivoinnovationinsightkernel methodslearning strategymachine learning algorithmmathematical modelmouse modelmultimodalitymultiple omicsneuralneural networknovel strategiesprediction algorithmpredictive modelingprogenitorresearch and developmentsimulationsingle cell analysissingle cell technologysingle-cell RNA sequencingskillsspatiotemporalstem cellssuccesstechnology developmentthree-dimensional modelingtranscription factortranscriptometranscriptomicsvector
项目摘要
Project summary
Despite remarkable advances in single-cell profiling, machine learning and systems biology, our ability to exploit
these measurements is limited by the lack of an appropriate framework to model and analyze them. In this
application, I propose an organic synthesis of experimental technological development, mathematical modeling,
and machine learning algorithm innovations to move beyond conventional descriptive and merely statistical
analyses of single cells to mechanistic and predictive modeling of cell fate transition over time and space, and
across transcriptomic, epigenetic and proteomic levels. Firstly, in order to unveil the regulatory networks that
govern the maintenance of stem cells and progenitors, I will extend the dynamo framework that published
recently to predict key regulators that stabilize or destabilize cells states, e.g. the hematopoietic stem cell state,
via sensitivity analyses of the reconstructed vector field. In addition, I will build upon the current success of
predicting a broad range of hematopoietic cell fate transitions with our least action path approach to extend it to
study other biological systems, such as pancreatic endocrinogenesis. To validate these predictions, I will
continue my ongoing collaboration with Dr. Vijay Sankran’s lab (co-mentor lab) to first implemented metabolic
labeling based scRNA-seq with the 10x chromium system and integrate it with perturb-seq that championed by
the Weissman lab (my mentor lab) to test the predicted factors’ efficacy in maintaining the HSC state. Second, I
will develop new approaches to seamlessly integrate multi-omics and harmonize short-term RNA velocities with
long-term lineage tracing. By doing so, we can enable even more accurate modeling of single cell fate transitions
that consider lineage-resolved, epigenetic, proteomic kinetics, offered by cutting-edge single-cell genomic
technologies and cutting-edge deep learning methods. Lastly, I will take advantage of my early access of mouse
embryogenesis dataset profiled with the powerful Stereo-seq through my close collaboration with BGI research
to build 3D in silico spatiotemporally models of mammalian organogenesis. I will also train myself to study other
state-of-the-art in-situ sequencing approaches, for example the STAR-map method from my collaborator, Dr.
Xiao Wang from Broad. Through the K99 phase of this proposed career development plan, I will develop new
computational toolkits and further strengthen my experiment skills, both in human hematopoiesis, Perturb-seq
and spatial transcriptomics. When combining these new skills with my rigorous training in systems biology, and
single cell genomics, I will be better prepared to transition into an independent investigator in a top-tier research
university. Undoubtedly, my research and career development during both K99 phase and my transition to R00
phase will be greatly facilitated thanks to the excellent research environment in Whitehead institute, Broad and
Harvard stem cell institute. To sum up, my proposed study will pave the road to launch my future interdisciplinary
team that aims at building mechanistic and predictive models of cell fate transitions with a focus in human
hematopoiesis.
项目摘要
尽管单细胞分析,机器学习和系统生物学取得了显着进步,但我们的利用能力
这些测量值受到缺乏适当的框架来建模和分析它们的限制。在这个
应用,我提出了实验技术发展,数学建模的有机综合,
和机器学习算法创新,超越了传统的描述性和统计
分析单细胞对随时间和空间的机械和预测模型的分析,以及
跨转录组,表观遗传和蛋白质组学水平。首先,为了揭示监管网络
控制干细胞和祖细胞的维护,我将扩展发表的发电机框架
最近,要预测稳定或破坏细胞状态的关键调节剂,例如造血干细胞状态,
通过重构矢量场的灵敏度分析。此外,我将基于目前的成功
通过我们最少的动作路径方法来预测广泛的造血细胞脂肪转变,以扩展到
研究其他生物系统,例如胰腺内分泌生成。为了验证这些预测,我将
继续我与Vijay Sankran博士(Co-Incertor Lab)进行的持续合作,以首次实施代谢
基于10倍铬系统标签的SCRNA-Seq,并将其与withurb-seq集成在一起
魏斯曼实验室(我的心理实验室)测试了预测因素维持HSC状态的效率。第二,我
将开发新的方法,以无缝整合多词并将短期RNA速度协调
长期谱系跟踪。通过这样做,我们可以实现更精确的单细胞脂肪过渡的建模
考虑了尖端单细胞基因组提供的谱系分辨,表观遗传学,蛋白质组学动力学
技术和最先进的深度学习方法。最后,我将利用我早期访问鼠标的优势
胚胎发生数据集通过我与BGI研究的密切合作与强大的立体声隔板进行了介绍
在计算机空间中构建3D的哺乳动物器官发生模型。我还将训练自己学习其他
最先进的原位测序方法,例如我的合作者Dr.的Star-MAP方法
王的小王。通过该提议的职业发展计划的K99阶段,我将开发新的
计算工具包,并进一步增强我的实验技巧
和空间转录组学。在将这些新技能与我在系统生物学方面的严格培训相结合时,
单细胞基因组学,我将更好地准备在顶级研究中过渡到独立研究者
大学。毫无疑问,我在K99阶段的研究和职业发展以及向R00的过渡
由于Whitehead Institute,Broad和
哈佛干细胞研究所。总而言之,我拟议的研究将为启动我未来的跨学科的道路铺平道路
旨在建立细胞脂肪过渡的机械和预测模型的团队,重点是人类
造血。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojie Qiu其他文献
Xiaojie Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别: