Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
基本信息
- 批准号:10572855
- 负责人:
- 金额:$ 8.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureAtlasesBig DataBiologicalCRISPR/Cas technologyCaenorhabditis elegansCell Differentiation processCell modelCellsChromatinChromiumCollaborationsCuesDataData SetDevelopmentDevelopment PlansDifferential EquationDigit structureEmbryoEmbryonic DevelopmentEnvironmentEpigenetic ProcessFutureGeneticGenomicsHematopoiesisHematopoieticHematopoietic stem cellsHourHumanKineticsLabelLearningLinkMachine LearningMaintenanceMammalian CellMapsMeasurementMeasuresMentorsMetabolicMethodsMicroscopyModelingModernizationMusOrganic SynthesisOrganogenesisPancreasPaperParacrine CommunicationPatternPhasePositioning AttributePredictive FactorProteomicsPublishingRNARegenerative MedicineResearchResearch PersonnelSideSignal TransductionStatistical Data InterpretationSumSystemSystems BiologyTechnologyTestingTimeTracerTrainingUniversitiesWorkbiological systemscareer developmentdeep learningdynamic systemexperimental studyfield studyimprovedin silicoin situ sequencingin vivoinnovationinsightkernel methodslearning strategymachine learning algorithmmathematical modelmouse modelmultimodalitymultiple omicsneuralneural networknovel strategiesprediction algorithmpredictive modelingprogenitorresearch and developmentsimulationsingle cell analysissingle cell technologysingle-cell RNA sequencingskillsspatiotemporalstem cellssuccesstechnology developmentthree-dimensional modelingtranscription factortranscriptometranscriptomicsvector
项目摘要
Project summary
Despite remarkable advances in single-cell profiling, machine learning and systems biology, our ability to exploit
these measurements is limited by the lack of an appropriate framework to model and analyze them. In this
application, I propose an organic synthesis of experimental technological development, mathematical modeling,
and machine learning algorithm innovations to move beyond conventional descriptive and merely statistical
analyses of single cells to mechanistic and predictive modeling of cell fate transition over time and space, and
across transcriptomic, epigenetic and proteomic levels. Firstly, in order to unveil the regulatory networks that
govern the maintenance of stem cells and progenitors, I will extend the dynamo framework that published
recently to predict key regulators that stabilize or destabilize cells states, e.g. the hematopoietic stem cell state,
via sensitivity analyses of the reconstructed vector field. In addition, I will build upon the current success of
predicting a broad range of hematopoietic cell fate transitions with our least action path approach to extend it to
study other biological systems, such as pancreatic endocrinogenesis. To validate these predictions, I will
continue my ongoing collaboration with Dr. Vijay Sankran’s lab (co-mentor lab) to first implemented metabolic
labeling based scRNA-seq with the 10x chromium system and integrate it with perturb-seq that championed by
the Weissman lab (my mentor lab) to test the predicted factors’ efficacy in maintaining the HSC state. Second, I
will develop new approaches to seamlessly integrate multi-omics and harmonize short-term RNA velocities with
long-term lineage tracing. By doing so, we can enable even more accurate modeling of single cell fate transitions
that consider lineage-resolved, epigenetic, proteomic kinetics, offered by cutting-edge single-cell genomic
technologies and cutting-edge deep learning methods. Lastly, I will take advantage of my early access of mouse
embryogenesis dataset profiled with the powerful Stereo-seq through my close collaboration with BGI research
to build 3D in silico spatiotemporally models of mammalian organogenesis. I will also train myself to study other
state-of-the-art in-situ sequencing approaches, for example the STAR-map method from my collaborator, Dr.
Xiao Wang from Broad. Through the K99 phase of this proposed career development plan, I will develop new
computational toolkits and further strengthen my experiment skills, both in human hematopoiesis, Perturb-seq
and spatial transcriptomics. When combining these new skills with my rigorous training in systems biology, and
single cell genomics, I will be better prepared to transition into an independent investigator in a top-tier research
university. Undoubtedly, my research and career development during both K99 phase and my transition to R00
phase will be greatly facilitated thanks to the excellent research environment in Whitehead institute, Broad and
Harvard stem cell institute. To sum up, my proposed study will pave the road to launch my future interdisciplinary
team that aims at building mechanistic and predictive models of cell fate transitions with a focus in human
hematopoiesis.
项目摘要
尽管在单细胞分析、机器学习和系统生物学方面取得了显着进展,但我们利用
由于缺乏一个适当的框架来模拟和分析这些数据,这些测量受到限制。在这
应用,我提出了实验技术开发,数学建模,
和机器学习算法创新,超越传统的描述性和仅仅统计性
从单细胞分析到随时间和空间的细胞命运转变的机制和预测建模,以及
在转录组学、表观遗传学和蛋白质组学水平上进行研究。首先,为了揭开监管网络的面纱,
管理干细胞和祖细胞的维持,我将扩展发表的发电机框架,
最近,为了预测稳定或不稳定细胞状态,例如造血干细胞状态,
通过对重构矢量场的灵敏度分析。此外,我将在目前成功的基础上,
预测广泛的造血细胞命运的转变与我们的最小行动路径的方法,以扩大它,
研究其他生物系统,如胰腺内分泌发生。为了验证这些预测,我将
我继续与Vijay Sankran博士的实验室(共同导师实验室)进行合作,
使用10 x铬系统标记基于scRNA-seq,并将其与由
Weissman实验室(我的导师实验室)来测试预测因素在维持HSC状态方面的功效。二我
将开发新的方法来无缝整合多组学,并协调短期RNA速度,
长期追踪血统通过这样做,我们可以更准确地建模单细胞命运转变
考虑到谱系分辨、表观遗传、蛋白质组动力学,由尖端单细胞基因组学提供,
技术和尖端的深度学习方法。最后,我将利用我的抢先体验的鼠标
通过我与BGI研究的密切合作,使用强大的Stereo-seq分析胚胎发生数据集
来建立哺乳动物器官发生的三维计算机时空模型。我也会训练自己去学习其他的
最先进的原位测序方法,例如来自我的合作者Dr.
远大的小王。通过K99阶段的职业发展计划,我将开发新的
计算工具包,并进一步加强我的实验技能,无论是在人类造血,扰动序列
和空间转录组学当我将这些新技能与系统生物学的严格训练相结合时,
单细胞基因组学,我将更好地准备过渡到一个顶级研究的独立调查员
大学毫无疑问,我在K99阶段和向R 00过渡期间的研究和职业发展
由于怀特黑德研究所,布罗德和
哈佛干细胞研究所。综上所述,我的研究将为我未来跨学科的发展铺平道路
该团队旨在建立细胞命运转变的机制和预测模型,重点是人类
造血
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojie Qiu其他文献
Xiaojie Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Research Grant














{{item.name}}会员




