Harvesting waste heat as electrical power: Theory-led control of heat transport in thermoelectrics

收集废热作为电能:热电热传输的理论主导控制

基本信息

  • 批准号:
    MR/T043121/1
  • 负责人:
  • 金额:
    $ 109.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Switching to cleaner sources of energy to alleviate global warming is the most important scientific and technological challenge of our time. More than 60 % of the energy used worldwide is wasted as heat from sectors including transportation and industry, representing vast quantities of unnecessary greenhouse gas emissions. Thermoelectric generators improve the efficiency of energy-intensive processes by recovering waste heat as electricity, and viable thermoelectric power is therefore an important part of a secure, sustainable energy strategy. Despite a projected global market of $1bn by 2024, however, large-scale thermoelectric power is currently not feasible due to limited efficiency and the scarcity and toxicity of the materials used.High-performance thermoelectric materials need to be good conductors of electricity and poor conductors of heat. Decades of advances in electronics have enabled materials scientists to reliably optimise the electrical properties of thermoelectrics to improve their performance, but developments are being held back by our poor understanding of heat transport and how to control it. This is an area where materials modelling - calculating and analysing material properties using theory and high-performance computing - has proven to be very successful.The research programme pioneered by this fellowship will cross the boundaries between physics, materials science and chemistry to develop the modelling tools needed for more complete understanding and control of heat transport in materials in general and thermoelectrics in particular. This will be achieved through three complementary aims:(1) Improving our understanding of how doping and alloying - both engineering strategies widely used to optimise thermoelectric performance - affect heat transport. This will allow a set of design rules to be established for choosing the best material modifications to optimise heat transport in tandem with electrical properties, allowing for targeted improvement of new and existing flagship thermoelectric materials. (2) Explaining how the complex ("anharmonic") structural dynamics found in some of the highest-performing thermoelectric materials leads to their desirable ultra-low heat transport, and developing strategies to "design in" this behaviour as a new route to improve thermoelectric performance alongside existing strategies.(3) Developing a novel class of high-performance thermoelectrics based on traditional inorganic materials incorporating small molecules. These "hybrid" materials made headlines for their potential use in high-performance solar cells, and have very recently been shown to have unusually low thermal conductivity, indicating that similar materials may be good candidate thermoelectrics. This last aim will therefore build on the tools and insight developed within the first two to identify and develop these materials into the next generation of high-performance thermoelectrics.This research will establish new routes to improve the performance of current and future thermoelectric materials and will demonstrate the theory-led design of a new class of efficient, cost-effective and sustainable thermoelectric materials suitable for widespread commercialisation. It will put the UK at the forefront of thermoelectric research to provide timely solutions to a critical worldwide challenge and benefit from a growing global market. An improved ability to control heat transport enabled by this programme will also be of immediate benefit to other technologies, yielding more efficient solar cells, better thermal management in batteries and improved power electronics and silicon chips, among others.
转向清洁能源以缓解全球变暖是我们时代最重要的科学和技术挑战。全世界使用的能源中有60%以上被浪费在运输和工业等部门的热量中,这意味着大量不必要的温室气体排放。热电发电机通过将废热回收为电力,提高了能源密集型过程的效率,因此,可行的热电发电是安全、可持续能源战略的重要组成部分。然而,尽管预计到2024年全球市场将达到10亿美元,但由于效率有限以及所用材料的稀缺性和毒性,大规模热电目前还不可行。高性能热电材料需要是电的良导体和热的不良导体。几十年来电子技术的进步使材料科学家能够可靠地优化热电材料的电气特性,以提高其性能,但是,由于我们对热传输以及如何控制它的理解不足,发展受到了阻碍。这是一个材料建模领域-使用理论和高性能计算来计算和分析材料特性-这项研究计划将跨越物理学、材料科学和化学之间的界限,开发所需的建模工具,以便更全面地了解和控制一般材料,特别是热电材料的热传输。这将通过三个互补的目标来实现:(1)提高我们对掺杂和合金化(这两种工程策略广泛用于优化热电性能)如何影响热传输的理解。这将允许建立一套设计规则,用于选择最佳的材料改性,以优化热传输与电气性能,从而有针对性地改进新的和现有的旗舰热电材料。(2)解释在一些性能最高的热电材料中发现的复杂(“非谐”)结构动力学如何导致其理想的超低热传输,并制定策略来“设计”这种行为,作为与现有策略一起提高热电性能的新途径。(3)基于传统无机材料结合小分子开发新型高性能热电材料。这些“混合”材料因其在高性能太阳能电池中的潜在用途而成为头条新闻,并且最近被证明具有异常低的热导率,这表明类似的材料可能是良好的候选热电材料。因此,最后一个目标将建立在前两个目标中开发的工具和洞察力的基础上,以识别和开发这些材料成为下一代高性能热电材料。这项研究将建立新的路线,以提高当前和未来热电材料的性能,并将展示新型高效,具有成本效益和可持续性的热电材料,适合广泛商业化。它将使英国处于热电研究的最前沿,为关键的全球挑战提供及时的解决方案,并从不断增长的全球市场中受益。该方案提高了控制热传输的能力,这也将立即有利于其他技术,产生更高效的太阳能电池,更好的电池热管理以及改进的电力电子和硅芯片等。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Dynamics and Thermal Transport in Bismuth Chalcogenide Alloys
  • DOI:
    10.33774/chemrxiv-2021-8487n
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    J. Cen;Ioanna Pallikara;J. Skelton
  • 通讯作者:
    J. Cen;Ioanna Pallikara;J. Skelton
Thermoelectric Properties of Pnma and Rocksalt SnS and SnSe
  • DOI:
    10.3390/solids3010011
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pallikara, Ioanna;Flitcroft, Joseph M.;Skelton, Jonathan M.
  • 通讯作者:
    Skelton, Jonathan M.
Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disorder.
  • DOI:
    10.1021/acs.cgd.3c00712
  • 发表时间:
    2023-10-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Buckingham, Mark A.;Skelton, Jonathan M.;Lewis, David J.
  • 通讯作者:
    Lewis, David J.
Thermoelectric properties of the bismuth oxychalcogenides Bi2SO2, Bi2SeO2 and Bi2TeO2
  • DOI:
    10.1088/2515-7655/ad2afd
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Flitcroft,J. M.;Althubiani,A.;Skelton,J. M.
  • 通讯作者:
    Skelton,J. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Skelton其他文献

A chemometric study of ageing in lead-based paints.
含铅涂料老化的化学计量学研究。
  • DOI:
    10.1016/j.talanta.2015.07.037
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Anuradha Pallipurath;Jonathan Skelton;S. Bucklow;Stephen Elliott
  • 通讯作者:
    Stephen Elliott

Jonathan Skelton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RE-WITCH Renewable and Waste heat valorisation in Industries via Technologies for Cooling production and energy Harvesting
RE-WITCH 通过冷却生产和能量收集技术实现工业中的可再生能源和废热价值
  • 批准号:
    10092071
  • 财政年份:
    2024
  • 资助金额:
    $ 109.37万
  • 项目类别:
    EU-Funded
Electrolyser Improvements driven by Waste Heat Recovery
废热回收推动电解槽改进
  • 批准号:
    10052878
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Feasibility Studies
Near Surface Geothermal Heat Battery : Sustainable Use of GeothermalHeat exploiting Legacy Mine workings to Transport Recycle Waste SurfaceHeat
近地表地热热电池:可持续利用地热,利用旧矿井运输回收废地表热
  • 批准号:
    2788797
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Studentship
Smart Integration of Waste and Renewable Energy for Sustainable Heat Upgrade in the Industry
废物与可再生能源智能整合,实现行业可持续供热升级
  • 批准号:
    10068733
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    EU-Funded
A study of thermal photonics power generation for effective utilization of waste heat energy
有效利用余热的热光子发电研究
  • 批准号:
    23H01353
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Transformative Recovery of Low-Grade Waste Heat using Ionic Thermoelectrics
利用离子热电技术改造回收低品位废热
  • 批准号:
    EP/W037300/2
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Research Grant
Waste Heat Recovery of the Fuel Cell Systems
燃料电池系统的余热回收
  • 批准号:
    2892992
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Studentship
IMPRINT Confined Spaces
印记 密闭空间
  • 批准号:
    10685073
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
Elucidation of thermoelectric properties and performance improvement of nitride semiconductors for utilization of waste heat from semiconductor devices
阐明氮化物半导体的热电特性和性能改进,以利用半导体器件的废热
  • 批准号:
    23H01454
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Exploring New Materials for Efficient Waste-Heat Conversion
LEAPS-MPS:探索高效废热转化的新材料
  • 批准号:
    2316831
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了