4DVOLC: Magma storage and ascent in volcanic systems via time resolved HPHT x-ray tomographic experiments and numerical modelling of eruption dynamics

4DVOLC:通过时间分辨 HPHT X 射线断层扫描实验和喷发动力学数值模拟,火山系统中的岩浆储存和上升

基本信息

  • 批准号:
    MR/V023985/1
  • 负责人:
  • 金额:
    $ 194.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Volcanoes are amongst the most powerful and dangerous natural manifestations on Earth. Eight million people live in the shadow of volcanoes. Bettering our current understanding of volcano system behaviour to improve hazard assessment and risk mitigation is therefore imperative for scientists and governmental authorities operating in active volcanic areas. The primary goal of this project is to create an empirically constrained quantitative description of magma vesiculation and crystallisation kinetics and to apply this to address key volcanological questions through a numerical model framework and observations of the natural system. To this aim, we will combine in situ 4D (time+space) synchrotron x-ray microtomographic experiments to visualise and quantify magma crystallisation and degassing at HPHT with state-of-the-art numerical modelling and observations of natural volcanic textures. This approach will revolutionise experimental petrology and volcanology and will create a paradigm shift in the ability to understand, quantify and forecast volcanic eruptions and their impact on society and climate. To achieve this goal, we plan to exploit the potential of a new x-ray transparent IHPV (internally heated pressure vessel), which is deployed in the framework of another grant, to address fundamental questions that have puzzled Earth scientists for decades: 1) what is the relationship between magma dynamics and transport at depth and the volcanic activity and signals that we watch at the surface? 2) how and why do transitions between explosive and effusive volcanic activity occur and how can we model and predict them? By exploiting the new IHPV, we will perform studies on magma vesiculation and crystallisation kinetics, which play a key role in such transitions, by applying in situ 4D x-ray computed microtomography imaging to magmas of different compositions, volatile and crystal content. The results of the 4D experiments on magma kinetics at the micro scale will be used to derive improved empirical laws of magma viscosity under evolving crystallisation and vesiculation conditions as a function of cooling and decompression rates, and then will be implemented with these latter into a large scale multiphase, multicomponent numerical model of the physical behaviour of magma in volcanic conduits. The model will be developed at the University of Manchester in collaboration with colleagues from the US. The overall findings will be then validated by, and compared with, observations and measurements from well studied natural volcanic eruptions in Italy and Reunion, which both host hazardous, inhabited active volcanic areas. In the event of an eruption, which is likely to happen on Reunion within the time frame of the project, the model will be used in collaboration with the local volcano observatory to constrain eruption forecasting and evolution in real time. With this holistic approach, the research project will generate an exceptionally reliable tool for investigating and quantifying volcano dynamics in both quiescent and eruptive conditions. Such tool will be used by volcano observatories/stakeholders before and during eruption breakout for tracking changes in volcano surface phenomena (i.e., deformation) and eruptive style and make predictions on the eruption evolution. The multidisciplinary, ground-breaking, scientific nature of the project will have a very strong positive impact on the future of volcanology in the UK, and will increase the UK potential over worldwide research. Ultimately, by exploiting the full potential of the new experimental apparatus, the project will produce a key experimental resource in the UK for future, novel investigations involving scientists from different areas of expertise within natural sciences and engineering.
火山是地球上最强大和最危险的自然现象之一。800万人生活在火山的阴影下。因此,在活火山地区工作的科学家和政府当局必须加强我们目前对火山系统行为的了解,以改进灾害评估和减轻风险。该项目的主要目标是创建一个经验约束的定量描述岩浆泡和结晶动力学,并应用此解决关键的火山问题,通过一个数值模型框架和自然系统的观察。为此,我们将结合联合收割机在原位4D(时间+空间)同步X射线显微层析实验,以可视化和量化岩浆结晶和脱气在HPHT与国家的最先进的数值模拟和观察自然火山纹理。这种方法将彻底改变实验岩石学和火山学,并将在理解,量化和预测火山爆发及其对社会和气候的影响的能力方面创造一个范式转变。为了实现这一目标,我们计划利用一种新的X射线透明IHPV(内部加热压力容器)的潜力,该容器在另一项资助的框架内部署,以解决困扰地球科学家几十年的基本问题:1)岩浆动力学和深度运输与火山活动和我们在地表观察到的信号之间的关系是什么?2)如何以及为什么会发生火山爆发和喷发之间的转换,我们如何建模和预测它们?通过利用新的IHPV,我们将进行研究岩浆泡和结晶动力学,这在这种转变中发挥了关键作用,通过应用原位4D X射线计算机显微断层扫描成像不同成分,挥发性和晶体含量的岩浆。在微观尺度上的岩浆动力学的4D实验的结果将被用来获得改进的经验法则的岩浆粘度下不断发展的结晶和泡状的条件下作为一个功能的冷却和减压率,然后将实施与这些后者到一个大规模的多相,多组分数值模型的物理行为的岩浆在火山管道。该模型将在曼彻斯特大学与来自美国的同事合作开发。然后,将通过对意大利和留尼汪岛自然火山爆发进行充分研究后得出的观察和测量结果来验证总体调查结果,并与之进行比较,这两个地方都有危险的有人居住的活火山区。如果在项目的时间范围内在留尼汪岛发生火山爆发,将与当地火山观测站合作使用该模型,以限制真实的时间内的火山爆发预测和演变。通过这种整体方法,该研究项目将产生一种非常可靠的工具,用于调查和量化静止和喷发条件下的火山动态。火山观测站/利益攸关方将在爆发之前和爆发期间使用这一工具来跟踪火山表面现象的变化(即,变形)和喷发样式,并对喷发演化进行预测。该项目的多学科,突破性,科学性将对英国火山学的未来产生非常强烈的积极影响,并将增加英国在全球研究中的潜力。最终,通过充分利用新实验装置的潜力,该项目将为英国未来的新研究提供关键的实验资源,涉及自然科学和工程领域不同专业领域的科学家。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase equilibrium experiments and thermodynamic simulations to constrain the pre-eruptive conditions of the 2021 Tajogaite eruption (Cumbre Vieja volcano, La Palma, Canary Islands)
  • DOI:
    10.1016/j.jvolgeores.2023.107901
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    A. Fabbrizio;Emily C. Bamber;Eleni Michailidou;Jorge E. Romero;F. Arzilli;B. Bonechi;M. Polacci;Mike Burton
  • 通讯作者:
    A. Fabbrizio;Emily C. Bamber;Eleni Michailidou;Jorge E. Romero;F. Arzilli;B. Bonechi;M. Polacci;Mike Burton
Outgassing behaviour during highly explosive basaltic eruptions
  • DOI:
    10.1038/s43247-023-01182-w
  • 发表时间:
    2024-01-02
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Bamber,Emily C.;La Spina,Giuseppe;Burton,Mike R.
  • 通讯作者:
    Burton,Mike R.
Numerical modelling of sudden eruptive style transitions at basaltic volcanoes
玄武岩火山突然喷发风格转变的数值模拟
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Biagioli E
  • 通讯作者:
    Biagioli E
Quantifying dendritic crystallization in hydrous basaltic magmas through 4D experiments with in situ view: implications for magma mobility within the Earth’s crust
通过原位视图的 4D 实验量化含水玄武岩浆中的树枝状结晶:对地壳内岩浆流动性的影响
  • DOI:
    10.5194/egusphere-egu24-2569
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arzilli F
  • 通讯作者:
    Arzilli F
Numerical modelling integrated with field observations and analytical studies to assess eruptive style transitions at basaltic volcanoes
数值模型与现场观测和分析研究相结合,以评估玄武岩火山喷发类型的转变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elisa Biagioli
  • 通讯作者:
    Elisa Biagioli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margherita Polacci其他文献

The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy
  • DOI:
    10.1016/j.jvolgeores.2008.11.026
  • 发表时间:
    2009-01-20
  • 期刊:
  • 影响因子:
  • 作者:
    Margherita Polacci;Michael R. Burton;Alessandro La Spina;Filippo Murè;Stefano Favretto;Franco Zanini
  • 通讯作者:
    Franco Zanini
<em>In situ</em> quantification of crystallisation kinetics of plagioclase and clinopyroxene in basaltic magma: Implications for lava flow
  • DOI:
    10.1016/j.epsl.2021.117016
  • 发表时间:
    2021-08-15
  • 期刊:
  • 影响因子:
  • 作者:
    Nolwenn Le Gall;Fabio Arzilli;Giuseppe La Spina;Margherita Polacci;Biao Cai;Margaret E. Hartley;Nghia T. Vo;Robert C. Atwood;Danilo Di Genova;Sara Nonni;Edward W. Llewellin;Mike R. Burton;Peter D. Lee
  • 通讯作者:
    Peter D. Lee

Margherita Polacci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

天元数学交流项目——MAGMA在群论与群作用中的应用研讨会
  • 批准号:
    11926202
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Research Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Continuing Grant
Phase equilibria experiments to constrain magma storage at Mt Churchill, Alaska; refining the magmatic source of the White River Ash eruptions
阿拉斯加丘吉尔山限制岩浆储存的相平衡实验;
  • 批准号:
    2308646
  • 财政年份:
    2023
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Standard Grant
Mineral records of magma storage and crystallization on the Moon
月球上岩浆储存和结晶的矿物记录
  • 批准号:
    2594636
  • 财政年份:
    2021
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Studentship
CAREER: Rethinking the Dynamics of Magma Storage and Eruption for Yellowstone’s Youngest Supereruption’
职业生涯:重新思考黄石公园最年轻的超级喷发的岩浆储存和喷发动力学
  • 批准号:
    2042662
  • 财政年份:
    2021
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Continuing Grant
The dynamics of magma storage and ascent beneath an active arc volcano (Villarrica, Chile)
活弧火山下方岩浆储存和上升的动态(智利维拉里卡)
  • 批准号:
    2287789
  • 财政年份:
    2019
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Studentship
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion
合作研究:利用橄榄石熔体包裹体的扩散水损失确定南极洲埃里伯斯火山省的岩浆储存深度和上升速率
  • 批准号:
    1644027
  • 财政年份:
    2017
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion
合作研究:利用橄榄石熔体包裹体的扩散水损失确定南极洲埃里伯斯火山省的岩浆储存深度和上升速率
  • 批准号:
    1644013
  • 财政年份:
    2017
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion
合作研究:利用橄榄石熔体包裹体的扩散水损失确定南极洲埃里伯斯火山省的岩浆储存深度和上升速率
  • 批准号:
    1644020
  • 财政年份:
    2017
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Standard Grant
Collaborative research: Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New Zealand
合作研究:评估火山口形成喷发周期中岩浆储存系统状态的变化,新西兰陶波火山区的案例研究
  • 批准号:
    1654275
  • 财政年份:
    2017
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了