ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS

抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用

基本信息

项目摘要

"We studied mechanisms for T cell recognition of antigens in association with major histocompatibility complex (MHC)-encoded molecules, and applications to the design of synthetic vaccines for AIDS and cancer. We have been characterizing the helper and cytotoxic T lymphocyte (CTL) responses to HIV envelope and reverse transcriptase, mapping the key epitopes, and defining the role of individual residues in these epitopes to be able to modify the structures to make more potent immunogens as vaccines. We have made vaccine constructs in which clusters of helper epitopes are synthesized coupled to a peptide that is a CTL epitope presented promiscuously by multiple class I MHC molecules in the human and mouse as well as a neutralizing antibody epitope. These constructs can induce all three arms of the immune response, neutralizing antibodies, CTL, and Th1 helper cells. Results of the first arm of a phase I clinical trial with one of these peptides show ability to induce CTL, helper T cell responses, and neutralizing antibodies to HIV in at least a subset of human recipients. Meanwhile, we are developing new approaches in mouse models to improve on the peptide vaccine constructs. We have now shown proof of principle that we can modify the sequence of a helper epitope of HIV to make it more immunogenic and also much more potent, when coupled to a CTL epitope, in eliciting CTL. We are applying this ""epitope enhancement"" approach to conserved helper epitopes presented by human class II HLA molecules, as well as to hepatitis C virus epitopes presented by human HLA-A2.1 (see below). We have discovered ways of increasing CTL, helper, and antibody responses and steering them toward desired phenotypes, such as Th1 or Th2 or particular antibody isotypes, by incorporating cytokines into the emulsion adjuvant with the antigen. We compared a panel of 8 cytokines for their effects on 8 types of immune response, and discovered a novel synergy between GM-CSF and IL-12 and between TNF and IL-12 in induction of CTL. We found that all 3 cytokines provide triple synergy for induction of CTL with a peptide vaccine, for induction of interferon-gamma, and for protection against viral challenge in vivo. We have shown that high avidity CTL specific for HIV-1 envelope peptide are much more effective at clearing a recombinant vaccinia virus expressing HIV gp160 from SCID mice than are low avidity CTL specific for the same peptide-MHC complex, and have worked out one mechanism involving the ability of high avidity CTL to kill cells earlier in virus infection before viral progeny are produced. However, we found that high avidity CTL are exquisitely sensitive to high dose antigen and will undergo programmed cell death, mediated by TNF and the TNF receptor II, but also requiring a permissive state involving a decrease in Bcl-2, induced by the signal through the T cell receptor. This effect may explain clonal exhaustion in viral infections. Finally, we have shown for the first time that protection against mucosal transmission of virus can be mediated by CD8 CTL without antibodies, but requires that the CTL be present at the mucosal site of transmission, whereas systemic CTL are not sufficient. The protection can be accomplished by intrarectal immunization with a peptide vaccine and increased by inclusion of IL-12 with the vaccine. With regard to cancer, we identified several CTL epitopes in proteins of hepatitis C virus (HCV), that causes liver cancer, using a novel approach, and have analyzed the role of each amino acid residue in order to modify one of the peptides to make a more potent vaccine. Using this ""epitope enhancement approach, we could increase the immunogenicity of an epitope of the HCV core protein, presented by the most common human class I HLA molecule, HLA-A2.1, both for HLA-A2.1-transgenic mice in vivo and for human T cells in vitro. This ""enhanced"" epitope is being incorporated into a vaccine. We developed peptide cancer vaccines inducing CTL immunity to mutant p53 expressed in cancer cells. We found that mutant p53 peptides, coated on dendritic cells, elicit CTL that kill tumor cells expressing the mutation and suppress established tumors in animals. Common mutations in ras peptides were found to enhance binding to HLA-A2.1, but also to influence antigen processing. We also induced murine CTL against fusion proteins from chromosomal translocations in pediatric tumors, alveolar rhabdomyosarcoma and Ewing's sarcoma, that protect mice. 29 patients have been treated in a phase I/II clinical trial of the mutant p53/ras peptide vaccine approach to treating cancer, and a large fraction have made CTL or cytokine responses, and no adverse effects have been seen. A trial of translocation fusion peptide immunization of patients with alveolar rhabdomyosarcoma and Ewing's sarcoma is underway. We have also started a trial of immunization of cervical cancer patients with peptides from the E6 and E7 oncoproteins of human papillomavirus type 16 that bind to HLA-A2.1 in patients who express this HLA molecule. A phase II trial of autologous dendritic cells pulsed with mutant ras peptides corresponding to the patient's tumor in colon cancer patients with HLA-A2.1 that can present these ras peptides has just received PRMC and IRB approval. (50% AIDS related)"

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J A BERZOFSKY其他文献

J A BERZOFSKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J A BERZOFSKY', 18)}}的其他基金

ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    3752001
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    3796428
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    2456830
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN-SPECIFIC T-CELL ACTIVATION--VACCINES FOR MALARIA/AIDS
抗原特异性 T 细胞激活——疟疾/艾滋病疫苗
  • 批准号:
    3808487
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN-SPECIFIC T-CELL ACTIVATION AND GENETIC CONTROL OF IMMUNE RESPONSES
抗原特异性 T 细胞激活和免疫反应的基因控制
  • 批准号:
    3962927
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    5200916
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN-SPECIFIC T-CELL ACTIVATION AND GENETIC CONTROL OF IMMUNE RESPONSES
抗原特异性 T 细胞激活和免疫反应的基因控制
  • 批准号:
    3916273
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
GENETIC CONTROL OF THE IMMUNE RESPONSE TO NATURAL ANTIGENS
对天然抗原免疫反应的基因控制
  • 批准号:
    4691741
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    6163260
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
ANTIGEN SPECIFIC T CELL ACTIVATION, APPLICATION TO VACCINES FOR CANCER AND AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    3774286
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Nonhuman Primate Core Functional Genomics Laboratory for AIDS Vaccines Research a
非人类灵长类艾滋病疫苗研究核心功能基因组学实验室
  • 批准号:
    8845051
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Nonhuman Primate Core Functional Genomics Laboratory for AIDS Vaccines Research a
非人类灵长类艾滋病疫苗研究核心功能基因组学实验室
  • 批准号:
    8748807
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
COMBINED APPROACH TO BROADLY PROTECTIVE AIDS VACCINES: PROJECT 4
广泛保护性艾滋病疫苗的综合方法:项目 4
  • 批准号:
    8357598
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
New HIV/AIDS vaccines employing inflammatory dendritic cells
使用炎症树突状细胞的新型艾滋病毒/艾滋病疫苗
  • 批准号:
    8234958
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
New HIV/AIDS vaccines employing inflammatory dendritic cells
使用炎症树突状细胞的新型艾滋病毒/艾滋病疫苗
  • 批准号:
    8139488
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
OPTIMIZE THE IMMUNOGENICITY OF MVA-BASED AIDS VACCINES
优化基于 MVA 的艾滋病疫苗的免疫原性
  • 批准号:
    8357426
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
COMBINED APPROACH TO BROADLY PROTECTIVE AIDS VACCINES: PROJECT 4
广泛保护性艾滋病疫苗的综合方法:项目 4
  • 批准号:
    8172760
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
COMBINED APPROACH TO BROADLY PROTECTIVE AIDS VACCINES: CORE B
广泛保护性艾滋病疫苗的综合方法:核心 B
  • 批准号:
    8172758
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Enhancing the Immunogenicity and Utility of MVA-Based AIDS Vaccines
增强基于 MVA 的艾滋病疫苗的免疫原性和实用性
  • 批准号:
    8075652
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Enhancing the Immunogenicity and Utility of MVA-Based AIDS Vaccines
增强基于 MVA 的艾滋病疫苗的免疫原性和实用性
  • 批准号:
    7927768
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了