Miniaturisation of high throughput healthcare bioreactors for advanced therapeutics
用于先进治疗的高通量医疗生物反应器的小型化
基本信息
- 批准号:MR/V026259/1
- 负责人:
- 金额:$ 191.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is little doubt of the promise of reprogramming a patient's own cells to combat degenerative diseases using cell and gene therapies (CDGT), given the success of Novartis Kymriah immunotherapy. However, one principal problem persists: the price point. The colossal costs of CGT reflect the current state-of-the-art: a slow manufacturing and development process from discovery to commercialization along with the exorbitant costs of multiple equipment needed to perform different processes. Thus, the bottleneck exists between production and accessibility. There is currently an unfulfilled need for a robust, scalable and closed bioprocessing manufacturing platform that can enable safe, low cost treatments, and rapid development time to improve accessibility to patients.Our primary goal is to develop a high-throughput bioprocessing platform based on microfluidics technology. Microfluidics - the science of fluid manipulation in the microscale - is able to address the challenges for streamlined and high-throughput cell culture production by optimizing fluid consumption during cell expansion. We have already submitted a European patent application (B74637EP D38585) of a microfluidic chip design, which is the heart of the bioprocessing platform device. This design differs from existing microfluidic work because it is multi-functional, i.e. capable of performing standard processes (seeding, transduction, washing, sampling, harvest) in situ in a sealed environment while preventing invasive interventions.Our innovation comes from the microfluidic technology applied to large scale cell culture compared to conventional 2D/3D manufacturing. The microfluidic cell culture technology has demonstrated several advantages compared to conventional methods:1. Ability to perform seeding, expansion, transduction, differentiation, filtration, sampling and harvest processes in a closed system. Conventional 2D/3D systems and even current small-scale microfluidic systems have limited functionality (i.e. conceived to perform one or a few functions, e.g. expansion and perfusion) and therefore require 'opening' the process at some point, which usually is labor-intensive (therefore costly) and poses a safety threat (e.g. contamination). 2. Dramatic reduction in reactant consumption: usually 10-20x lower reactant consumption due to inherent minute volumes coupled with continuous perfusion systems used in microfluidics. Currently, with conventional 2D/3D systems, reactants represent 30-35% of total costs.3. Better control of process parameters. 2D/3D systems are characterized by high cell to total volume ratio which leads to heterogeneous end product and low process efficiency (e.g., 1-2 days to transduce cells). Microfluidics allows to finely control concentrations and maximize cell-to-reactant contact, i.e. cells have equal access to oxygen and nutrients due to fluid circulation in micro-channels, which results in a more homogeneous end product and less process failure (e.g. cell death). 4. Ability to scale up without process change. Scale-ups with conventional 2D/3D technology require process adaptation. Existing small-scale microfluidic systems are not designed for high-throughput and thus cannot be scaled in a cost-effective way. Our platform uses a stackable cassette system which can be scaled from a few hundred cells to several hundred million of cells, without any process adaptations. Cells and fluids can be transferred between different parts of the system via automated pumps and microfluidic valves.The invention of a bioprocessing platform that responds to these specifications requires multi-disciplinary approach and understanding of the underlying scientific principles: flow hydrodynamics (fluid mechanics), cell growth and culture (biology/biophysics/biochemistry), together with the development of the hardware (engineering) used for parallelization and automation of multiple large chips.
毫无疑问,鉴于诺华Kymriah免疫疗法的成功,使用细胞和基因疗法(CDGT)重新编程患者自身细胞以对抗退行性疾病的前景。然而,一个主要问题仍然存在:价格点。CGT的巨大成本反映了当前的最先进水平:从发现到商业化的缓慢制造和开发过程沿着执行不同过程所需的多种设备的高昂成本。因此,在生产和获取之间存在瓶颈。目前,我们需要一个强大的,可扩展的和封闭的生物加工制造平台,可以实现安全,低成本的治疗,并快速开发时间,以提高患者的可及性。我们的主要目标是开发一个基于微流体技术的高通量生物加工平台。微流体技术--微尺度流体操作的科学--能够通过优化细胞扩增过程中的流体消耗来解决流线型和高通量细胞培养生产的挑战。我们已经提交了微流控芯片设计的欧洲专利申请(B74637 EP D38585),这是生物处理平台设备的核心。这种设计与现有的微流控工作不同,因为它是多功能的,即能够在密封环境中原位执行标准过程(接种,转导,洗涤,取样,收获),同时防止侵入性干预。我们的创新来自于微流控技术应用于大规模细胞培养,与传统的2D/3D制造相比。与传统方法相比,微流控细胞培养技术已表现出几个优势:1。能够在封闭系统中进行接种、扩增、转导、分化、过滤、取样和收获过程。传统的2D/3D系统甚至当前的小规模微流体系统具有有限的功能性(即,被设想为执行一个或几个功能,例如扩增和灌注),因此需要在某个点“打开”过程,这通常是劳动密集型的(因此是昂贵的)并且造成安全威胁(例如污染)。2.显著减少反应物消耗:由于固有的微小体积加上微流体中使用的连续灌注系统,通常反应物消耗降低10- 20倍。目前,对于传统的2D/3D系统,反应物占总成本的30-35%。更好地控制工艺参数。2D/3D系统的特征在于高的细胞与总体积比,这导致不均匀的最终产品和低的工艺效率(例如,1-2天至100个细胞)。微流体允许精细地控制浓度并最大化细胞与反应物的接触,即由于微通道中的流体循环,细胞可以平等地获得氧气和营养物,这导致更均匀的最终产品和更少的过程故障(例如细胞死亡)。4.能够在不改变工艺的情况下扩大规模。传统2D/3D技术的放大需要工艺适应性。现有的小规模微流体系统不是为高通量设计的,因此不能以具有成本效益的方式扩展。我们的平台使用可堆叠的盒系统,该系统可以从几百个细胞扩展到数亿个细胞,而无需任何工艺调整。细胞和液体可以通过自动泵和微流体阀在系统的不同部分之间转移。生物处理平台的发明需要多学科方法和对基本科学原理的理解,以满足这些规格:流体动力学(流体力学),细胞生长和培养(生物学/生物物理学/生物化学),以及用于多个大型芯片的并行化和自动化的硬件(工程)的开发。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Key benefits of a microfluidic platform for cell culture at a clinically relevant scale
用于临床相关规模细胞培养的微流体平台的主要优势
- DOI:10.18609/cgti.2022.151
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kusena J
- 通讯作者:Kusena J
Microfluidics as a tool to assess and induce emulsion destabilization.
微流体作为评估和诱导乳液不稳定的工具。
- DOI:10.1039/d1sm01588e
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Porto Santos T
- 通讯作者:Porto Santos T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cesare Cejas其他文献
Cesare Cejas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
转录因子DNA结合谱绘制新方法及其应用研究
- 批准号:61171030
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Optimizing virtual hits of human CGAS inhibitors to treat neurodegeneration
优化人类 CGAS 抑制剂的虚拟命中来治疗神经退行性疾病
- 批准号:
10603818 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Structural Determinants of Permeation Barriers in Escherichia coli
大肠杆菌渗透屏障的结构决定因素
- 批准号:
10749251 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
- 批准号:
10607151 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Protease-activated-receptor-2 antagonists for treatment of migraine pain
蛋白酶激活受体 2 拮抗剂治疗偏头痛
- 批准号:
10602826 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Skeletal muscle protein structural dynamics and function drive applications to drug discovery
骨骼肌蛋白结构动力学和功能驱动药物发现的应用
- 批准号:
10650572 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Antifungals targeting pantothenate phosphorylation
靶向泛酸磷酸化的抗真菌药
- 批准号:
10696567 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Point of care diagnostic for sickle cell disease
镰状细胞病的护理点诊断
- 批准号:
10739074 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别:
Methods to modulate GI inflammatory and infectious diseases
调节胃肠道炎症和传染病的方法
- 批准号:
10867133 - 财政年份:2023
- 资助金额:
$ 191.12万 - 项目类别: