Harnessing sensorimotor cortical plasticity to improve outcomes in children with dystonia and dystonic cerebral palsy

利用感觉运动皮质可塑性改善肌张力障碍和肌张力障碍脑瘫儿童的预后

基本信息

  • 批准号:
    MR/W015692/1
  • 负责人:
  • 金额:
    $ 200.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Dystonia is a severely disabling movement disorder with no cure, in which people suffer painful muscle spasms causing twisting movements and abnormal postures. There are many causes, including genetic conditions and brain injury. The latter includes dystonic cerebral palsy (CP) in which the injury occurs around birth and which affects around 2.5 million people worldwide. Whilst adult-onset dystonia tends to involve a single body region, childhood-onset dystonia often affects the whole body. These children find it impossible to control their bodies, have difficulties accessing education or activities, and require costly life-long care. Dystonia is often unresponsive to drugs. Symptoms can be improved by Deep Brain Stimulation (DBS), in which fine wires are implanted into nerve cells deep in the brain. The wires deliver electrical pulses to modulate brain activity and reduce unwanted movements. DBS is very effective in some types of dystonia but less so in others. Predicting benefit is difficult, as the mechanisms that produce the abnormal movements are not fully understood. There is growing evidence that one mechanism involves abnormal brain processing of sensory information (eg signals to the brain from our senses of touch and body position): the distorted perception of these signals in turn disrupts the way the brain produces instructions for planning and performing movements. Most research in this field involves adults with dystonias affecting a single part of the body. Research in childhood dystonia, especially dystonic CP is sparse, despite these patients having the greatest clinical need: their dystonia affects the whole body, is very severe, and less responsive to therapy. Understanding the mechanisms that lead to different types of dystonia and how they affect the developing brain is critical if we are to improve outcomes and time interventions to exploit developmental time-windows when the brain is most able to respond. My own work shows that sensory pathways to the brain are abnormal in over 40% of children with dystonia (especially dystonic CP). I have also shown that the way the brain processes sensory information related to movement is abnormal in children with dystonia and dystonic CP, by using methods that record the EEG (electroencephalogram - brain wave signals) and/or EMG (electromyogram - electrical signal from muscles). Our brain waves show characteristic patterns in relation to our activities. For example, a particular brain rhythm known as "mu", which is seen over sensorimotor cortex (the outer layer of the brain responsible for processing sensory and movement information), is typically reduced in response to sensory stimulation or movement. This change in mu activity reflects the brain's processing of sensory information and is important in the development of motor skills in children. My research in children with dystonia/dystonic CP, shows that this movement-related change in mu activity is impaired, and that sensory stimuli related to movement trigger many cells across the brain to fire in synchrony with each other at a low frequency. It is possible that these two abnormal patterns of brain activity are linked and that they also relate to abnormal muscle activity.This project will 1. test these links and the effect of DBS on these abnormal brain patterns, thereby advancing knowledge of the mechanisms underlying dystonia/dystonic CP;2. investigate whether movement-related changes in mu activity can be enhanced in children with dystonia/dystonic CP by using EEG feedback in the form of a computer game; and whether enhanced mu activity is associated with improved movement control. These findings will tell us whether biofeedback of mu activity could have a therapeutic role;3. study the early development of movement-related changes in mu activity in healthy infants and those at risk of developing dystonic CP, thus demonstrating likely optimal time windows for therapeutic intervention.
肌张力障碍是一种无法治愈的严重致残性运动障碍,患者会遭受痛苦的肌肉痉挛,导致扭曲运动和异常姿势。有很多原因,包括遗传条件和脑损伤。后者包括张力障碍性脑瘫(CP),其中损伤发生在出生前后,影响全球约250万人。虽然成人发作的肌张力障碍往往涉及一个单一的身体区域,儿童发作的肌张力障碍往往影响整个身体。这些儿童无法控制自己的身体,难以接受教育或参加活动,需要昂贵的终身护理。肌张力障碍通常对药物无反应。通过脑深部电刺激(DBS)可以改善症状,其中将细导线植入大脑深处的神经细胞。这些电线传递电脉冲来调节大脑活动,减少不必要的运动。DBS对某些类型的肌张力障碍非常有效,但对其他类型的肌张力障碍效果较差。预测益处是困难的,因为产生异常运动的机制尚未完全了解。越来越多的证据表明,其中一种机制涉及大脑对感官信息(例如从我们的触觉和身体位置感传向大脑的信号)的异常处理:对这些信号的扭曲感知反过来又会扰乱大脑产生计划和执行运动指令的方式。这一领域的大多数研究涉及患有肌张力障碍的成年人,影响身体的单个部位。尽管儿童肌张力障碍患者的临床需求最大,但对儿童肌张力障碍(尤其是肌张力障碍CP)的研究却很少:他们的肌张力障碍影响全身,非常严重,并且对治疗的反应较差。了解导致不同类型肌张力障碍的机制以及它们如何影响发育中的大脑,对于我们改善结果和时间干预以利用大脑最能做出反应的发育时间窗至关重要。我自己的工作表明,超过40%的肌张力障碍儿童(尤其是肌张力障碍型CP)的大脑感觉通路异常。我还通过记录EEG(脑电图-脑电波信号)和/或EMG(肌电图-肌肉电信号)的方法,证明了患有肌张力障碍和肌张力障碍CP的儿童大脑处理与运动相关的感觉信息的方式是异常的。我们的脑电波显示出与我们的活动有关的特征模式。例如,在感觉运动皮层(负责处理感觉和运动信息的大脑外层)上观察到的称为“mu”的特定大脑节律通常会响应于感觉刺激或运动而降低。mu活动的这种变化反映了大脑对感觉信息的处理,对儿童运动技能的发展很重要。我对患有肌张力障碍/肌张力障碍性CP的儿童的研究表明,这种与运动相关的mu活动变化受损,与运动相关的感觉刺激会触发大脑中的许多细胞以低频率同步放电。这两种异常的大脑活动模式可能是相互联系的,它们也与异常的肌肉活动有关。测试这些联系和DBS对这些异常大脑模式的影响,从而推进对肌张力障碍/肌张力障碍CP潜在机制的认识;2.调查是否可以通过使用电脑游戏形式的脑电反馈来增强患有肌张力障碍/肌张力障碍性CP的儿童中与运动相关的μ活动变化;以及增强的μ活动是否与改善的运动控制相关。这些发现将告诉我们mu活性的生物反馈是否具有治疗作用;3.研究健康婴儿和有发生张力障碍性CP风险的婴儿运动相关mu活性变化的早期发展,从而证明治疗干预的可能最佳时间窗。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subband Independent Component Analysis for Coherence Enhancement
Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia
  • DOI:
    10.1093/braincomms/fcae061
  • 发表时间:
    2024-03-14
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Guo,Zhenghao;Lin,Jean-Pierre;McClelland,Verity M.
  • 通讯作者:
    McClelland,Verity M.
Metabolic patterns in brain 18F-fluorodeoxyglucose PET relate to aetiology in paediatric dystonia.
Structured Errors-in-Variables Modelling for Cortico-Muscular Coherence Enhancement
用于增强皮质肌肉一致性的结构化变量误差建模
  • DOI:
    10.1109/icassp49357.2023.10095004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo Z
  • 通讯作者:
    Guo Z
Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia.
童年的肌张力障碍:儿科研究的见解如何丰富肌张力障碍的网络理论。
  • DOI:
    10.1007/978-3-031-26220-3_1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McClelland VM
  • 通讯作者:
    McClelland VM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Verity McClelland其他文献

Verity McClelland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Verity McClelland', 18)}}的其他基金

Sensory system abnormalities in childhood dystonia / dystonic cerebral palsy - are sensory networks modulated by Deep Brain Stimulation?
儿童肌张力障碍/肌张力障碍脑瘫的感觉系统异常 - 感觉网络是否受深部脑刺激调节?
  • 批准号:
    MR/P006868/1
  • 财政年份:
    2016
  • 资助金额:
    $ 200.6万
  • 项目类别:
    Fellowship

相似海外基金

Wireless Implantable COrtical Neuroprosthetic System (W-ICONS)
无线植入式皮质神经假体系统 (W-ICONS)
  • 批准号:
    10576751
  • 财政年份:
    2023
  • 资助金额:
    $ 200.6万
  • 项目类别:
Reorganization of physiological connectivity across the sensorimotor network after stroke
中风后感觉运动网络生理连接的重组
  • 批准号:
    488590
  • 财政年份:
    2023
  • 资助金额:
    $ 200.6万
  • 项目类别:
    Operating Grants
Cortical and subcortical underpinnings of typical and dysarthric speech - Resubmission - 1
典型和构音障碍言语的皮质和皮质下基础 - 重新提交 - 1
  • 批准号:
    10822457
  • 财政年份:
    2023
  • 资助金额:
    $ 200.6万
  • 项目类别:
Cortical Complications of Perimenopause and Obstructive Sleep Apnea in Underrepresented Middle-Aged Women with Type 2 Diabetes
代表性不足的 2 型糖尿病中年女性的围绝经期皮质并发症和阻塞性睡眠呼吸暂停
  • 批准号:
    10901012
  • 财政年份:
    2023
  • 资助金额:
    $ 200.6万
  • 项目类别:
Impact of autism genetic risk on cortical sensorimotor dynamics
自闭症遗传风险对皮质感觉运动动力学的影响
  • 批准号:
    10750315
  • 财政年份:
    2023
  • 资助金额:
    $ 200.6万
  • 项目类别:
The role of cortical D1R-expressing neurons in taste-based sensorimotor transformations
皮质 D1R 表达神经元在基于味觉的感觉运动转换中的作用
  • 批准号:
    10652395
  • 财政年份:
    2022
  • 资助金额:
    $ 200.6万
  • 项目类别:
Sleep-related behavior and cortical activity in premature human infants as predictors of developmental outcomes.
早产儿的睡眠相关行为和皮质活动作为发育结果的预测因子。
  • 批准号:
    10697325
  • 财政年份:
    2022
  • 资助金额:
    $ 200.6万
  • 项目类别:
Sensorimotor interaction for stability: influence of sensory information on cortical control of balance
感觉运动相互作用对稳定性的影响:感觉信息对皮层平衡控制的影响
  • 批准号:
    RGPIN-2021-03637
  • 财政年份:
    2022
  • 资助金额:
    $ 200.6万
  • 项目类别:
    Discovery Grants Program - Individual
The role of cortical D1R-expressing neurons in taste-based sensorimotor transformations
皮质 D1R 表达神经元在基于味觉的感觉运动转换中的作用
  • 批准号:
    10535972
  • 财政年份:
    2022
  • 资助金额:
    $ 200.6万
  • 项目类别:
Sleep-related behavior and cortical activity in premature human infants as predictors of developmental outcomes.
早产儿的睡眠相关行为和皮质活动作为发育结果的预测因子。
  • 批准号:
    10364472
  • 财政年份:
    2022
  • 资助金额:
    $ 200.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了