Using data to improve public health: COVID-19 secondment
利用数据改善公共卫生:COVID-19 借调
基本信息
- 批准号:MR/W021455/1
- 负责人:
- 金额:$ 15.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide increase in hospitalisations and deaths since it emerged in December 2019. The effects of COVID-19 depend very much on each patient and range from asymptomatic to fatal cases. The duration of symptoms is also very heterogeneous, lasting between a few days for some patients and several weeks for others that develop the so-called 'long COVID'. Older age is a well-known risk factor for both severe and long COVID. This has been associated with a debilitated immune response caused by ageing processes. Pre-existing diseases such as hypertension, diabetes, cardiovascular disease, or cancer also increase the risk of severe infection in patients with COVID-19. However, severe COVID-19 has also been observed for many seemingly healthy middle-aged individuals. Understanding of the risk factors for severe COVID-19 remains limited and the reasons why susceptibility to the virus varies so widely in the population are poorly understood. More research is needed to unveil the biological mechanisms of severity so that highly susceptible individuals and pathways to novel treatments can be identified.Recent studies have shown that the molecules in biofluids such as blood, urine or faeces are altered in people with cardiovascular disease, diabetes, or chronic inflammation. These conditions represent risk factors for severe COVID-19 and we hypothesise that biofluid molecules can be used as metabolic biomarkers to predict whether a patient infected by SARS-CoV-2 is likely to be seriously affected. The central idea of the proposed research is to use metabolic biomarkers to predict the severity of COVID-19 and the likelihood of long COVID for individuals that have not necessarily been diagnosis with a pre-existing health condition. To this end, we will use pre-pandemic data from several cohort studies which, in addition to basic information on age, sex, ethnicity, etc, contain hundreds of metabolic biomarkers for thousands of individuals. To understand the link between these characteristics and the impact of COVID-19, we will use symptoms data for those individuals in the cohort studies that had COVID-19. The data will be analysed with statistical methods to identify associations between the characteristics of individuals before the pandemic and the severity of the disease. This analysis will be complemented with computer programs developed to predict if the infection of an individual will have serious effects based on his/her characteristics before the pandemic. Machine learning techniques will be used to train computer programs to automatically recognise metabolic features that represent a risk for severe COVID-19.The project can be beneficial both in terms of basic science and applications. Indeed, the proposed research will enhance our understanding of how metabolic biomarkers may explain the susceptibility to severe COVID-19. From an applied viewpoint, using the information encoded by numerous metabolic biomarkers to train machine learning models can improve our ability to identify individuals for whom COVID-19 may have serious consequences.
由严重急性呼吸系统综合征冠状病毒2 (SARS-CoV-2)引起的2019年冠状病毒病(COVID-19)自2019年12月出现以来,已导致全球住院和死亡人数增加。COVID-19的影响在很大程度上取决于每个患者,从无症状到致命病例不等。症状的持续时间也很不一样,有些患者持续几天,有些患者持续几周,这些患者会出现所谓的“长冠状病毒”。众所周知,年龄较大是严重和长期COVID的风险因素。这与衰老过程引起的免疫反应减弱有关。高血压、糖尿病、心血管疾病或癌症等既往疾病也会增加COVID-19患者严重感染的风险。然而,许多看似健康的中年人也发现了严重的COVID-19。对严重COVID-19风险因素的了解仍然有限,人们对病毒易感性差异如此之大的原因知之甚少。需要更多的研究来揭示严重程度的生物学机制,以便确定高度易感个体和新治疗途径。最近的研究表明,在患有心血管疾病、糖尿病或慢性炎症的人群中,血液、尿液或粪便等生物体液中的分子会发生改变。这些情况代表了严重COVID-19的危险因素,我们假设生物流体分子可以用作代谢生物标志物,以预测感染SARS-CoV-2的患者是否可能受到严重影响。拟议研究的中心思想是使用代谢生物标志物来预测COVID-19的严重程度,以及那些不一定被诊断患有预先存在的健康状况的人长COVID的可能性。为此,我们将使用来自几项队列研究的大流行前数据,这些数据除了有关年龄、性别、种族等的基本信息外,还包含数千人的数百种代谢生物标志物。为了了解这些特征与COVID-19影响之间的联系,我们将使用患有COVID-19的队列研究中个体的症状数据。将用统计方法分析这些数据,以确定大流行前的个体特征与疾病严重程度之间的关联。这一分析将与计算机程序相辅相成,这些程序是为了根据一个人在大流行之前的特征预测他/她的感染是否会产生严重影响而开发的。机器学习技术将用于训练计算机程序,以自动识别代表严重COVID-19风险的代谢特征。该项目在基础科学和应用方面都是有益的。事实上,拟议的研究将增强我们对代谢生物标志物如何解释对严重COVID-19的易感性的理解。从应用的角度来看,使用大量代谢生物标志物编码的信息来训练机器学习模型可以提高我们识别COVID-19可能对其产生严重后果的个体的能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of the host reservoir of SARS-CoV-2 and determining when it spilled over into humans
- DOI:10.1101/2023.11.25.568670
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Vidyavathi Pamjula;Norval J.C Strachan;F. Pérez-Reche
- 通讯作者:Vidyavathi Pamjula;Norval J.C Strachan;F. Pérez-Reche
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francisco Perez Reche其他文献
Francisco Perez Reche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Collaborative R&D
EO4AgroClimate Using Earth Observation data to improve datasets for biosecurity risk mapping of pest and disease and biocontrol suitability
EO4AgroClimate 利用地球观测数据改进病虫害生物安全风险图及生物防治适宜性的数据集
- 批准号:
ST/Y00017X/1 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Research Grant
Intermittent Fasting using a Fasting-Mimetic Diet to Improve Prostate Cancer Control and Metabolic Outcomes
使用模拟禁食饮食进行间歇性禁食以改善前列腺癌控制和代谢结果
- 批准号:
10639416 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
- 批准号:
10699530 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Improving Function and Reducing Opioid Use for Patients with Chronic Low Back Pain in Rural Communities through Improved Access to Physical Therapy using Telerehabilitation
通过远程康复改善物理治疗的可及性,改善农村社区慢性腰痛患者的功能并减少阿片类药物的使用
- 批准号:
10745146 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
A quantitative viability metric for liver transplantation using Resonance Raman Spectroscopy
使用共振拉曼光谱进行肝移植的定量活力指标
- 批准号:
10562740 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Using Large-Scale Network Data to Measure Social Returns and Improve Targeting of Crime-Reduction Interventions
使用大规模网络数据衡量社会回报并提高减少犯罪干预措施的针对性
- 批准号:
2242453 - 财政年份:2023
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant