A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
基本信息
- 批准号:10696649
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Absence EpilepsyAccidental InjuryAdoptionAffectAgreementAlgorithmic AnalysisAlgorithmsAnticonvulsantsAntiepileptic AgentsAppointmentAreaAwarenessBiometryCaregiversCellular PhoneChildChildhoodClinicClinicalClinical ResearchComputer softwareDataData CollectionData ReportingDetectionDevelopmentDevicesDiagnosisDiagnosticDiagnostic ProcedureEffectivenessElectroencephalographyElementsEpilepsyEvaluationExhalationEye MovementsEyeglassesFaceFoundationsFreedomFrequenciesFutureGlassHomeHome environmentHourHyperventilationImpairmentImprove AccessInterviewLabelLearningLengthLow incomeMarketingMeasuresMethodsMobile Health ApplicationMonitorMulti-site clinical studyOutcome MeasurePatient Self-ReportPatientsPerformancePersonsPhasePopulationPredispositionReadingReportingRiskRuralSafetySeizuresSensitivity and SpecificitySurveysSyndromeSystemTelemedicineTestingTherapeutic EffectTimeTrainingTreatment EfficacyValidationValproic AcidVideo RecordingWait TimeWorkaccurate diagnosischildhood epilepsycohortdetection sensitivitydiagnosis standardeffectiveness evaluationexperienceimproved outcomemHealthmachine learning algorithmmachine learning methodnovel therapeuticspatient populationprimary care providerremote diagnosisremote monitoringsmartphone applicationsocial stigmasoftware developmentsuccesstooltreatment responseusabilityvisual tracking
项目摘要
Abstract
Eysz, Inc. is developing a mobile health (mHealth) application and algorithms for diagnosing and monitoring
absence epilepsy remotely. Accurate diagnosis and monitoring of seizures and therapeutic effects are critical
elements of effective epilepsy treatment. Unfortunately, absence seizures are notoriously difficult to identify,
leading to diagnostic delay and difficulty monitoring treatments. The gold standard for diagnosing absence
seizures is video EEG (VEEG), but this method is expensive, limited to clinical settings, and can be hard to
access. The gold standard for monitoring absence epilepsy is patient self-reported data, which studies have
shown to be more than 50% inaccurate. Other strategies for remote monitoring, such as ambulatory EEG, lack
the sensitivity and specificity of VEEG, and can add to the stigma people with epilepsy experience. There have
been no new therapy approvals for absence epilepsy since the 1990s, in part due to the difficulty of measuring
outcomes. Thus, there is a critical need for a remote diagnostic/monitoring tool for absence seizures. Eysz
therefore plans to develop an mHealth app that uses (1) voluntary guided hyperventilation (HV), with (2) eye
movement and facial biometric data to monitor seizure susceptibility and treatment responses in people with
absence seizures. Voluntary HV triggers seizures in >90% of people with absence epilepsy and is a standard
clinical tool to assist in diagnosing and monitoring absence epilepsy. HV has also been shown to be safe and
effective when performed on a daily basis to activate seizures and thereby shorten VEEG monitoring sessions.
Thus, HV offers a promising tool for use in the context of at-home monitoring of seizure activity. Eysz is
developing software and algorithms for detecting seizures using eye movement data, starting with absence
seizures. Eysz proposes to extend the use of video-based eye-tracking (and facial biometric tracking) to a
smartphone-based application that includes software-guided HV. This Phase I proposal focuses on initial testing
of our smartphone-based tool for guided HV and video data collection. The Specific Aims of this project are: 1)
Collect eye-movement and facial biometric data from subjects undergoing HV concurrently with VEEG; 2)
Evaluate the potential for a new “gold standard” metric for algorithm validation to enable mHealth development
in the home environment; and 3) Develop machine learning (ML) algorithms that detect seizures from eye
tracking and facial biometrics data. Eysz aims to demonstrate >75% sensitivity for detection of seizures >7 s in
duration, providing a strong foundation for future evaluation of at-home use of the app and algorithm accuracy
in a larger cohort of patients.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Kuperman其他文献
Rachel Kuperman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Kuperman', 18)}}的其他基金
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
- 批准号:
10421230 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
- 批准号:
10372655 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
- 批准号:
10267036 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
相似海外基金
Comparison of cognitive-behavioural treatments for children with PTSD following an accidental injury: A multi-site RCT.
意外伤害后患有 PTSD 的儿童认知行为治疗的比较:多中心随机对照试验。
- 批准号:
nhmrc : 569660 - 财政年份:2009
- 资助金额:
$ 49.99万 - 项目类别:
NHMRC Project Grants
PSYCHOLOGICAL EFFECTS OF ACCIDENTAL INJURY IN CHILDREN
儿童意外伤害的心理影响
- 批准号:
6264550 - 财政年份:1998
- 资助金额:
$ 49.99万 - 项目类别:
PTSD AND SLEEP FOLLOWING SEVERE ACCIDENTAL INJURY
严重意外伤害后的创伤后应激障碍和睡眠
- 批准号:
2675324 - 财政年份:1996
- 资助金额:
$ 49.99万 - 项目类别:
PTSD AND SLEEP FOLLOWING SEVERE ACCIDENTAL INJURY
严重意外伤害后的创伤后应激障碍和睡眠
- 批准号:
2890673 - 财政年份:1996
- 资助金额:
$ 49.99万 - 项目类别: