Bayesian causal learning: A novel framework for drug-target discovery using Mendelian randomization on single-cell transcriptomics
贝叶斯因果学习:在单细胞转录组学上使用孟德尔随机化的药物靶点发现的新框架
基本信息
- 批准号:MR/W029790/1
- 负责人:
- 金额:$ 64.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of novel therapeutic drugs is a costly and time-consuming endeavour that often fails when tested in large-scale Phase II/III clinical trials which cost tens of millions of dollars. In recent years there has been increasing interest in using evidence from genetics to support the choice of which drug targets to take forward.In this project, we will use a unique resource of single-cell transcriptomics developed at Imperial College which has measured the expression of genes in hundreds of thousands of cells in two regions of the human brain, the hippocampus and pre-frontal cortex, which are critical for memory and behaviour. The unique advantage of this dataset is the ability to zoom in on individual cells, and thereby work out which genes and which types of cells cause disease. This dataset has been linked with genetic information to define genetic regulation of single-cell expression, also known as expression quantitative trait loci (eQTL). However, analytical tools lag behind our ability to generate data and so these datasets are currently not being utilized to their full capacity.To this end, we will combine two causal inference concepts. The first concept called Mendelian randomization (MR) uses the fact that variations in a person's DNA sequence are randomly assigned at conception. MR uses this "natural randomization" to infer the causal effect of an exposure (i.e., the expression of a gene in a cell) on an outcome (neurological disease). The second concept is causal network graphs and structural learning algorithms which consider a group of genes and infer which genes are connected and the directionality of the effect, that is if gene A causes gene B or vice versa. Incorporating the additional information on cell-type specificity from the single-cell transcriptomics measurements will allow us to understand how molecular effects propagate through different cell-types. Working on genetic data allows the integration of publicly available genetic association data from genome-wide association studies. In this proposal, we consider a wide range of more than twenty neurological phenotypes and brain diseases as outcomes, including for example Alzheimer's disease, Parkinson's disease, and epilepsy. Large genome-wide association studies have shown that there is variation in our genome that is associated with more than one disease. From these datasets, we can learn if there are shared molecular mechanisms that cause more than one disease. Here, we propose a novel computational toolkit, called single-cell MR (scMR) for the analysis of single-cell transcriptomics eQTL data combined with genome-wide association studies on the disease outcomes. ScMR will implement computational methodology with the following three aims:1) To identify which genes act in which cells and cause disease. 2) To understand how genes relate with each other and across different cell-types and how molecular processes propagate through different molecular layers.3) To integrate many responses into the model to identify genes that cause more than one disease.Our findings will not be limited to which genes need to be altered to treat neurological disease, but also which specific cell-types need to be targeted. Moreover, we want to learn downstream molecular processes in different cells-types which will help to better design therapeutic interventions. Finally, integrating data on many related neurological disease outcomes will allow us to define shared molecular mechanisms affecting more than one disease outcome. This information can be used for the repurposing of existing drugs, the identification of drug-targets with co-benefits that reduce risk of more than one disease, or highlight the risk of potential side-effects.
开发新的治疗药物是一项昂贵和耗时的工作,在耗资数千万美元的大规模第二/第三阶段临床试验中往往失败。近年来,人们对使用遗传学证据来支持选择哪些药物靶点越来越感兴趣。在这个项目中,我们将使用帝国理工学院开发的一种独特的单细胞转录组资源,该资源测量了人脑两个区域--海马体和前额叶皮质--数十万个细胞中基因的表达,这两个区域对记忆和行为至关重要。这个数据集的独特优势是能够放大单个细胞,从而找出哪些基因和哪些类型的细胞导致疾病。这个数据集已经与遗传信息联系在一起,以定义单细胞表达的遗传调节,也称为表达数量性状基因座(EQTL)。然而,分析工具落后于我们生成数据的能力,因此这些数据集目前没有得到充分利用。为此,我们将结合两个因果推理概念。第一个概念被称为孟德尔随机化(MR),它利用了这样一个事实,即一个人的DNA序列的变异在受孕时是随机分配的。MR使用这种“自然随机化”来推断暴露(即细胞中基因的表达)对结果(神经疾病)的因果影响。第二个概念是因果网络图和结构学习算法,它们考虑一组基因,并推断哪些基因是相关的,以及影响的方向性,即如果基因A导致基因B,或者反之亦然。结合来自单细胞转录组测量的关于细胞类型特异性的额外信息,将使我们能够理解分子效应如何通过不同的细胞类型传播。对遗传数据的工作允许整合来自全基因组关联研究的公开可用遗传关联数据。在这项建议中,我们考虑了20多种神经表型和脑疾病作为结果,包括例如阿尔茨海默病、帕金森氏病和癫痫。大型全基因组关联研究表明,我们的基因组存在变异,与不止一种疾病有关。从这些数据集,我们可以了解是否存在导致不止一种疾病的共同分子机制。在这里,我们提出了一种新的计算工具包,称为单细胞磁共振(SCMR),用于分析单细胞转录eQTL数据,并结合全基因组对疾病结果的关联研究。SCMR将实施以下三个目标的计算方法:1)确定哪些基因在哪些细胞中起作用并导致疾病。2)了解基因如何相互关联,如何跨越不同的细胞类型,以及分子过程是如何通过不同的分子层传播的。3)将多种反应整合到模型中,以识别导致多种疾病的基因。我们的发现将不仅限于哪些基因需要改变以治疗神经疾病,还包括哪些特定的细胞类型需要成为靶点。此外,我们希望了解不同细胞类型的下游分子过程,这将有助于更好地设计治疗干预措施。最后,整合许多相关神经疾病结果的数据将使我们能够定义影响不止一种疾病结果的共同分子机制。这些信息可用于重新调整现有药物的用途,确定具有共同益处的药物靶点,以降低一种以上疾病的风险,或突出潜在副作用的风险。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circulatory proteins relate cardiovascular disease to cognitive performance: A mendelian randomisation study.
循环蛋白将心血管疾病与认知性能联系起来:孟德尔随机化研究。
- DOI:10.3389/fgene.2023.1124431
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Huang, Jian;Gill, Dipender;Zuber, Verena;Matthews, Paul M.;Elliott, Paul;Tzoulaki, Ioanna;Dehghan, Abbas
- 通讯作者:Dehghan, Abbas
Examining the Lancet Commission risk factors for dementia using Mendelian randomisation.
- DOI:10.1136/bmjment-2022-300555
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Desai, Roopal;John, Amber;Saunders, Rob;Marchant, Natalie L.;Buckman, Joshua E. J.;Charlesworth, Georgina;Zuber, Verena;Stott, Joshua
- 通讯作者:Stott, Joshua
Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis.
- DOI:10.1186/s12916-021-02193-0
- 发表时间:2022-01-11
- 期刊:
- 影响因子:9.3
- 作者:Bouras E;Karhunen V;Gill D;Huang J;Haycock PC;Gunter MJ;Johansson M;Brennan P;Key T;Lewis SJ;Martin RM;Murphy N;Platz EA;Travis R;Yarmolinsky J;Zuber V;Martin P;Katsoulis M;Freisling H;Nøst TH;Schulze MB;Dossus L;Hung RJ;Amos CI;Ahola-Olli A;Palaniswamy S;Männikkö M;Auvinen J;Herzig KH;Keinänen-Kiukaanniemi S;Lehtimäki T;Salomaa V;Raitakari O;Salmi M;Jalkanen S;PRACTICAL consortium;Jarvelin MR;Dehghan A;Tsilidis KK
- 通讯作者:Tsilidis KK
Inflammatory Diseases, Inflammatory Biomarkers, and Alzheimer Disease: An Observational Analysis and Mendelian Randomization.
- DOI:10.1212/wnl.0000000000201489
- 发表时间:2023-02-07
- 期刊:
- 影响因子:9.9
- 作者:
- 通讯作者:
Exploring the causal effect of maternal pregnancy adiposity on offspring adiposity: Mendelian randomisation using polygenic risk scores.
- DOI:10.1186/s12916-021-02216-w
- 发表时间:2022-02-01
- 期刊:
- 影响因子:9.3
- 作者:Bond TA;Richmond RC;Karhunen V;Cuellar-Partida G;Borges MC;Zuber V;Couto Alves A;Mason D;Yang TC;Gunter MJ;Dehghan A;Tzoulaki I;Sebert S;Evans DM;Lewin AM;O'Reilly PF;Lawlor DA;Järvelin MR
- 通讯作者:Järvelin MR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Verena Zuber其他文献
W74. POLYGENIC ANALYSES SHOW IMPORTANT DIFFERENCES BETWEEN MDD SYMPTOMS COLLECTED USING PHQ9 AND CIDI-SF
W74. 多基因分析显示使用 PHQ9 和 CIDI-SF 收集的 MDD 症状之间存在重要差异
- DOI:
10.1016/j.euroneuro.2023.08.261 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Lianyun Huang;Sonja Tang;Jolien Rietkerk;Vivek Appadurai;Morten Krebs;Andrew Schork;Thomas Werge;Verena Zuber;Kenneth Kendler;Na Cai - 通讯作者:
Na Cai
T52. CURRENT SYMPTOMS OF MDD ARE TRAIT-LIKE
- DOI:
10.1016/j.euroneuro.2022.07.353 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Lianyun Huang;Sonja Tang;Verena Zuber;Kenneth Kendler;Na Cai - 通讯作者:
Na Cai
Bayesian causal graphical model for joint Mendelian randomization analysis of multiple exposures and outcomes
用于多种暴露因素和结果的联合孟德尔随机化分析的贝叶斯因果图模型
- DOI:
10.1016/j.ajhg.2025.03.005 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.100
- 作者:
Verena Zuber;Toinét Cronjé;Na Cai;Dipender Gill;Leonardo Bottolo - 通讯作者:
Leonardo Bottolo
Altered nocturnal growth hormone (GH) secretion in obsessive compulsive disorder
强迫症中夜间生长激素 (GH) 分泌的改变
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.7
- 作者:
M. Kluge;P. Schüssler;J. Weikel;M. Dresler;Verena Zuber;Florian Querfurt;A. Yassouridis;A. Steiger - 通讯作者:
A. Steiger
Cell state-dependent allelic effects and contextual Mendelian randomization analysis for human brain phenotypes
细胞状态依赖的等位基因效应和人类大脑表型的情境孟德尔随机化分析
- DOI:
10.1038/s41588-024-02050-9 - 发表时间:
2025-01-10 - 期刊:
- 影响因子:29.000
- 作者:
Alexander Haglund;Verena Zuber;Maya Abouzeid;Yifei Yang;Jeong Hun Ko;Liv Wiemann;Maria Otero-Jimenez;Louwai Muhammed;Rahel Feleke;Alexi Nott;James D. Mills;Liisi Laaniste;Djordje O. Gveric;Daniel Clode;Ann C. Babtie;Susanna Pagni;Ravishankara Bellampalli;Alyma Somani;Karina McDade;Jasper J. Anink;Lucia Mesarosova;Nurun Fancy;Nanet Willumsen;Amy Smith;Johanna Jackson;Javier Alegre-Abarrategui;Eleonora Aronica;Paul M. Matthews;Maria Thom;Sanjay M. Sisodiya;Prashant K. Srivastava;Dheeraj Malhotra;Julien Bryois;Leonardo Bottolo;Michael R. Johnson - 通讯作者:
Michael R. Johnson
Verena Zuber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
- 批准号:10401003
- 批准年份:2004
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 64.64万 - 项目类别:
Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 64.64万 - 项目类别:
Continuing Grant
Causal Knowledge-Empowered Adaptive Federated Learning
因果知识赋能的自适应联邦学习
- 批准号:
DP240102088 - 财政年份:2024
- 资助金额:
$ 64.64万 - 项目类别:
Discovery Projects
Collaborative Research: Causal Structures: Experiments and Machine Learning
协作研究:因果结构:实验和机器学习
- 批准号:
2315665 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别:
Standard Grant
The Socio-economic Impact of the Post-COVID-19 Condition in the Canadian Context
COVID-19 后疫情对加拿大的社会经济影响
- 批准号:
494280 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别:
Operating Grants
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 64.64万 - 项目类别: