Enabling AI-based Mouse Genetic Discovery
实现基于人工智能的小鼠基因发现
基本信息
- 批准号:10724522
- 负责人:
- 金额:$ 77.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAllelesAmino Acid SequenceArtificial IntelligenceCandidate Disease GeneClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesDNA Sequence AlterationDataData AnalysesData SetData SourcesDatabasesDevelopmentDiabesityDiabetes MellitusDiseaseDisease modelEngineeringEvaluationExhibitsExonsFoundationsGenerationsGenesGeneticGenetic EnhancementGenetic ModelsGenetic VariationGenome engineeringGenomicsHealthHealthcareHodgkin DiseaseHomologous GeneHumanInbred StrainIndividualKnock-in MouseKnock-outLaboratory miceLymphomaMachine LearningMalignant NeoplasmsMapsMeasuresMethodsMusNetwork-basedObesityPaperPatternPhenotypePublic HealthPublishingResearchTandem Repeat SequencesTrainingValidationVariantcandidate identificationcausal variantcomputational pipelinescomputerized toolsdisease phenotypegenetic variantgenome wide association studygraph neural networkhuman diseasehuman modelimprovedinnovationknockout genemodel organismmouse geneticsmouse genomemouse modelnovelprotein protein interactionpublic databaseresponsetrait
项目摘要
Abstract
No model organism has contributed more than the laboratory mouse to improving human health. Many genetic
factors and therapies for human diseases were initially discovered or characterized in mice, before they were
transitioned to human use.
Large-scale efforts are underway to integrate recent advances in artificial
intelligence (AI) into human healthcare, but very few AI advances have been used for analysis of the data
produced using the model organism that has formed the foundation for many healthcare innovations. We
recently developed an AI-based computational pipeline that could identify causative genetic factors for murine
genetic models of human biomedical traits and diseases. After assessing the strength of allelic associations
with the phenotypic response pattern exhibited by the inbred strains; this AI pipeline uses a machine-learning
trained method to analyze 29M published papers and assess candidate gene-phenotype relationships; and the
information obtained from assessment of their protein-protein interaction network and protein sequence
features of the candidate genes are also incorporated into the graph neural network-based analysis.
This project will produce a markedly enhanced AI pipeline (AIv2) that will greatly accelerate the pace of genetic
discovery using murine genetic models. First, long read genomic sequencing (LRS) and computational tools
are used to produce a more complete map of the pattern of genetic variation among the inbred strains, which
also includes alleles for two major types of genetic variation (structural variants, tandem repeats), which are
poorly characterized using conventional sequencing methods. Second, we develop two additional
computational tools for the AI, which facilitate candidate gene prioritization through the evaluation of: (i) the
phenotypes exhibited by 8200 mouse lines with individual gene knockouts (KOs); and (ii) the results of 5700
human GWAS covering many biomedical phenotypes to determine if alleles within the human homologues of
candidate murine genes affect an analyzed trait. The ability of AIv2 to accelerate genetic discovery will be
demonstrated by using it to identify new genetic factors through analysis of a public database with >10,307
datasets, which measure biomedical or disease-related responses in panels of inbred strains. Since it is critical
to experimentally confirm some of the computational findings, genetic factors for two murine models of human
diseases that are major public health problems (cancer, diabetes/obesity), which were identified by the AI
pipeline, will be experimentally validated. CRISPR engineering is used to revert the causative mutation(s) to
wildtype on the genetic background of the strain exhibiting the disease phenotype, and the genome engineered
mice are analyzed to assess the contribution of the genetic factor to the disease phenotype.
摘要
没有任何模式生物比实验室小鼠对改善人类健康的贡献更大。许多遗传
人类疾病的因子和疗法最初是在小鼠中发现或表征的,
转变为人类使用。
大规模的努力正在进行中,以整合人工智能的最新进展,
人工智能(AI)进入人类医疗保健,但很少有AI进步用于数据分析
使用模式生物产生,该模式生物为许多医疗保健创新奠定了基础。我们
最近开发了一种基于人工智能的计算管道,可以识别导致小鼠死亡的遗传因素。
人类生物医学特征和疾病的遗传模型。在评估了等位基因关联的强度之后,
与近交系表现出的表型反应模式;这种人工智能管道使用机器学习
训练的方法来分析29 M发表的论文,并评估候选基因-表型关系;
从评估其蛋白质-蛋白质相互作用网络和蛋白质序列获得的信息
候选基因的特征也被结合到基于图形神经网络的分析中。
该项目将产生一个显着增强的人工智能管道(AIv 2),这将大大加快基因工程的步伐。
使用鼠遗传模型的发现。首先,长读基因组测序(LRS)和计算工具
用于绘制近交系间遗传变异模式的更完整图谱,
还包括两种主要类型的遗传变异(结构变异,串联重复)的等位基因,
使用常规测序方法表征较差。其次,我们开发了两个新的
用于AI的计算工具,其通过以下评估促进候选基因优先化:(i)
由具有单个基因敲除(科斯)的8200个小鼠品系表现出的表型;和(ii)5700个小鼠品系的结果。
人类GWAS涵盖了许多生物医学表型,以确定人类同源物中的等位基因是否
候选鼠基因影响所分析的性状。AIv 2加速基因发现的能力将是
通过分析公共数据库,使用它来识别新的遗传因素,
数据集,其测量近交系组中的生物医学或疾病相关反应。因为这是至关重要的
为了通过实验证实一些计算结果,两种小鼠模型的遗传因素,
AI确定的主要公共卫生问题(癌症、糖尿病/肥胖症)
管道,将进行实验验证。CRISPR工程化用于将致病突变恢复为
在显示疾病表型的菌株的遗传背景上的野生型,和基因组工程化
分析小鼠以评估遗传因子对疾病表型的贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic Discovery Enabled by A Large Language Model.
由大型语言模型实现的基因发现。
- DOI:10.1101/2023.11.09.566468
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tu,Tao;Fang,Zhouqing;Cheng,Zhuanfen;Spasic,Svetolik;Palepu,Anil;Stankovic,KonstantinaM;Natarajan,Vivek;Peltz,Gary
- 通讯作者:Peltz,Gary
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY A PELTZ其他文献
GARY A PELTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY A PELTZ', 18)}}的其他基金
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10198889 - 财政年份:2017
- 资助金额:
$ 77.97万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10406825 - 财政年份:2017
- 资助金额:
$ 77.97万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 77.97万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10075085 - 财政年份:2017
- 资助金额:
$ 77.97万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
9926473 - 财政年份:2017
- 资助金额:
$ 77.97万 - 项目类别:
Stem Cell-Based In vivo Models of Human Genetic Liver Diseases
基于干细胞的人类遗传性肝病体内模型
- 批准号:
8812710 - 财政年份:2015
- 资助金额:
$ 77.97万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 77.97万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Studentship