Characterising and predicting apraxic deficits in patients with chronic aphasia caused by left hemisphere stroke

左半球卒中引起的慢性失语症患者的失语症特征和预测

基本信息

  • 批准号:
    MR/W030268/1
  • 负责人:
  • 金额:
    $ 29.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This study will investigate apraxia after stroke, a condition which significantly affects the lives of 30- 40% stroke patients (some 25,000 people annually) making them unable to care for themselves. Apraxia causes problems with planning and executing everyday actions, such as brushing teeth, getting dressed, or making a cup of tea. It can occur both in the dominant and non-dominant hand and is not due to muscle weakness or sensory loss. Apraxia is often not recognised when patients are admitted into stroke units because identification requires detailed neuropsychology testing which is not standardised and is time-consuming. As a result, patients may miss the opportunity to get appropriate rehabilitation for this disabling condition. Studies investigating language impairments (aphasia) after stroke have faced similar challenges because of lengthy tests and difficulties targeting appropriate rehabilitation. Researchers at the University of Cambridge have recently implemented new analysis techniques on detailed language assessments. This has allowed identification of behavioural components causing aphasia that could distinguish specific language impairments from impairments caused by other cognitive problems following a stroke. These have been linked to the patient's brain scans to identify the brain regions causing the impairments. Further work has demonstrated the ability to predict impairments based on brain scans. The research group is currently working to validate these methods in a large cohort of patients over time to identify factors leading to recovery. This proposal aims to apply the same analysis techniques to identify apraxia in the same patient cohort studied for language deficits. Apraxia often co-occurs with aphasia after stroke, and some of the deficits in both disorders may be shared. Stroke patients who have participated in the aphasia studies outlined above will be invited to take part in the study. They will undergo detailed tasks of apraxia testing. A subgroup of patients with apraxia who have problems recognising gestures will undergo more detailed gesture recognition and imitation tasks during functional neuroimaging. This is to differentiate brain activity and connectivity changes in speech and action understanding. Any errors patients make on apraxia tasks will be grouped into simpler components. These, combined with brain imaging markers, will be used to create predictions to accurately distinguish problems and brain lesions relating to apraxia from those related to aphasia and from those caused by more generic cognitive impairments after stroke. This will enable us to identify simpler core factors associated with apraxia and the areas of brain damage associated with them, to predict patient apraxia problems and guide future rehabilitation needs. The key outcomes of the proposed studies will be the creation of accurate screens for predicting whether patients have apraxia after stroke, using simpler tasks than currently, and brain imaging. These will then allow for quicker, easier testing for this condition after stroke and will enable selection of patient-centred therapies for neuro-rehabilitation. Future studies arising from this work will aim to validate the new diagnostic and prediction models created in this study by testing them in a longitudinal cohort of patients, tested both at acute and chronic stages after stroke, to identify if they can accurately predict recovery from apraxia from the acute to the chronic stages after stroke.
这项研究将调查中风后的失用症,这种情况严重影响了30- 40%的中风患者(每年约25,000人)的生活,使他们无法照顾自己。失用症会导致计划和执行日常行为的问题,比如刷牙、穿衣服或泡一杯茶。它可以发生在优势手和非优势手,不是由于肌肉无力或感觉丧失。当病人被送进中风病房时,失用症通常不会被识别出来,因为识别需要详细的神经心理学测试,这既不标准化,也很耗时。因此,患者可能会错过为这种致残状况获得适当康复的机会。中风后语言障碍(失语症)的研究也面临着类似的挑战,因为冗长的测试和针对适当康复的困难。剑桥大学的研究人员最近在详细的语言评估中应用了新的分析技术。这使得识别导致失语症的行为成分成为可能,从而将特定的语言障碍与中风后由其他认知问题引起的障碍区分开来。这些与患者的脑部扫描相关联,以确定导致损伤的大脑区域。进一步的工作已经证明了基于脑部扫描预测损伤的能力。该研究小组目前正致力于在一大批患者中验证这些方法,以确定导致康复的因素。本研究旨在应用相同的分析技术来识别语言缺陷患者的失用症。卒中后失用症常与失语症同时发生,这两种疾病的一些缺陷可能是共同的。参加上述失语症研究的中风患者将被邀请参加该研究。他们将接受详细的失用测试任务。一组有识别手势问题的失用症患者将在功能性神经成像中接受更详细的手势识别和模仿任务。这是为了区分言语和动作理解中的大脑活动和连通性变化。患者在失用症任务中犯的任何错误都将被归为更简单的部分。这些与脑成像标记相结合,将用于做出预测,以准确区分与失用症有关的问题和脑损伤,与失语症有关的问题和脑损伤,以及与中风后更常见的认知障碍有关的问题和脑损伤。这将使我们能够识别与失用症相关的更简单的核心因素以及与之相关的脑损伤区域,从而预测患者的失用症问题并指导未来的康复需求。拟议研究的关键成果将是创建准确的屏幕,用于预测中风后患者是否有失用症,使用比目前更简单的任务和脑成像。这样就可以更快、更容易地检测中风后的这种情况,并可以选择以患者为中心的神经康复治疗方法。未来的研究将旨在验证本研究中创建的新的诊断和预测模型,通过在患者的纵向队列中进行测试,在中风后的急性和慢性阶段进行测试,以确定它们是否可以准确地预测中风后从急性到慢性阶段的失用症的恢复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elisabeth Rounis其他文献

To start immune therapy or not? An unusual presentation of longitudinally extensive transverse myelitis with pyrexia
是否开始免疫治疗?
  • DOI:
    10.1007/s00415-018-8879-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Elisabeth Rounis;Elisabeth Rounis;M. I. Leite;M. I. Leite;Pieter M. Pretorius;Arjune Sen;Arjune Sen
  • 通讯作者:
    Arjune Sen

Elisabeth Rounis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
  • 批准号:
    2305659
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Fellowship Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Research Grant
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
  • 批准号:
    10106145
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
  • 批准号:
    24K09176
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
  • 批准号:
    MR/X019616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了