Pharmacological inhibition or genetic deletion of a neurotoxin found abundantly at sites of spinal cord injury will neuroprotect and improve outcome.

对脊髓损伤部位大量发现的神经毒素进行药理学抑制或基因删除将起到神经保护作用并改善预后。

基本信息

  • 批准号:
    MR/X003752/1
  • 负责人:
  • 金额:
    $ 75.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Background:Spinal cord injuries or brain injuries disable millions of people each year, and the cost to national economies run into tens of billions of pounds. Therapies which reduce the extent of neural cell death after injury and that improve survivor outcomes are badly needed.Innovation: We have discovered a neurotoxic molecule that is found abundantly at sites of neurotrauma in humans, rats, and mice after it is released by white blood cells (including neutrophils). Per molecule, it is up to 700 times more neurotoxic than glutamate (a molecule which is toxic at high concentrations when released from injured neurons). Pharmaceutical companies have spent hundreds of millions of pounds trying to develop medicines that inhibit toxins like glutamate; given our discovery of this even more potent neurotoxin at sites of neurotrauma, it merits urgent attention and could be a highly valuable target. Surprisingly, this neurotoxin remains essentially unstudied after neurological injury. Excitingly, we have identified a polyclonal antibody which completely blocks this molecule's ability to kill CNS neurons for at least 48 hours in vitro.Aim 1: We wish to develop therapeutic "monoclonal antibodies" that inhibit this neurotoxin. "Monoclonal antibodies" are a class of therapeutic that can be extraordinarily effective at inhibiting defined molecular targets; they are amenable to engineering for specific properties (e.g., size, longevity in the body, safety profile) and already provide health and commercial benefits worldwide. We now seek to develop and evaluate novel monoclonal antibodies that improve survival of human and rodent CNS neurons exposed to this neurotoxin in Petri dishes (Aim 1 and 2) or in vivo (Aim 3). Aim 2: We have also discovered that cerebrospinal fluid obtained by lumbar puncture from humans within 48 hours of spinal cord injury is toxic to rodent CNS neurons cultured in Petri dishes; we now wish to maximise survival of injured human neurons in Petri dishes by applying our new therapeutic antibodies without, or combined with, inhibitors of other toxins (e.g., glutamate and reactive oxygen species). We will analyse any other residual toxic molecule(s) by separating cerebrospinal fluid into component parts (e.g., based on molecular charge or size), for identification using modern biochemical methods, including but not limited to proteomics. Aim 3: We wish to test the idea that injection of these therapeutic monoclonal antibodies by lumbar puncture (into the cerebrospinal fluid) in mice would improve outcome in a clinically relevant model of contusive spinal cord injury when given in a medically feasible time frame. We predict that short-term treatment with the therapeutic monoclonal antibodies will neutralize this neurotoxin, will improve survival of human CNS neurons, and will improve sensorimotor outcomes (e.g., walking) in the long-term. Alternatively, we will evaluate whether lumbar injection of a known human protein inhibitor of this toxin can improve outcome. Aim 4: Finally, we wish to determine whether mice that lack the mouse equivalents of this neurotoxin show better CNS cell survival and improved recovery in the same clinically relevant model of contusive spinal cord injury. This will enable us to confirm the specificity of our therapeutic monoclonal antibodies, and their mechanisms of action, which in turn will help us optimise our therapy for maximum benefit.Clinical importance: These experiments are important because monoclonal antibodies could be given by straightforward lumbar puncture, within hours of injury, to reduce the amount of disability after spinal cord injury, and potentially also after stroke or traumatic brain injury.These experiments will help us take this potential therapy one step closer to clinical trials.
背景:脊髓损伤或脑损伤每年使数百万人致残,国民经济损失高达数百亿英镑。创新:我们发现了一种神经毒性分子,这种分子被白色血细胞(包括中性粒细胞)释放后,在人类、大鼠和小鼠的神经创伤部位大量存在。每分子,它的神经毒性比谷氨酸(一种从受损神经元释放的高浓度毒性分子)高700倍。制药公司已经花费了数亿英镑试图开发抑制谷氨酸等毒素的药物;鉴于我们在神经创伤部位发现了这种更强大的神经毒素,它值得紧急关注,并可能成为一个非常有价值的目标。令人惊讶的是,这种神经毒素在神经损伤后仍然基本上未被研究。令人兴奋的是,我们已经确定了一种多克隆抗体,完全阻断这种分子的能力,杀死中枢神经系统神经元至少48 hours in vitro.Aim 1:我们希望开发治疗性的“单克隆抗体”,抑制这种神经毒素。“单克隆抗体”是一类在抑制确定的分子靶标方面可以非常有效的治疗剂;它们适合于针对特定性质(例如,尺寸、在体内的寿命、安全性),并已在全球范围内提供健康和商业效益。我们现在寻求开发和评估新的单克隆抗体,以提高人类和啮齿动物中枢神经系统神经元暴露于这种神经毒素在培养皿(目标1和2)或在体内(目标3)的生存。目标二:我们还发现,在脊髓损伤48小时内通过腰椎穿刺从人获得的脑脊液对培养在皮氏培养皿中的啮齿动物CNS神经元是有毒的;我们现在希望通过应用我们的新的治疗性抗体而不使用或与其他毒素(例如,谷氨酸盐和活性氧物质)。我们将通过将脑脊液分离成组成部分(例如,基于分子电荷或大小),用于使用现代生物化学方法(包括但不限于蛋白质组学)进行鉴定。目标三:我们希望测试这样的想法,即当在医学上可行的时间范围内给予时,通过腰椎穿刺在小鼠中注射这些治疗性单克隆抗体(到脑脊液中)将改善挫伤性脊髓损伤的临床相关模型的结果。我们预测用治疗性单克隆抗体短期治疗将中和这种神经毒素,将改善人CNS神经元的存活,并将改善感觉运动结果(例如,行走,从长远来看。或者,我们将评估腰椎注射这种毒素的已知人类蛋白质抑制剂是否可以改善结果。目标4:最后,我们希望确定缺乏这种神经毒素的小鼠等效物的小鼠是否在相同的挫伤性脊髓损伤的临床相关模型中显示出更好的CNS细胞存活和改善的恢复。这将使我们能够确认我们的治疗性单克隆抗体的特异性及其作用机制,这反过来将有助于我们优化我们的治疗,以获得最大的益处。临床重要性:这些实验很重要,因为单克隆抗体可以在受伤后几小时内通过直接的腰椎穿刺给予,以减少脊髓损伤后的残疾程度,也可能在中风或创伤性脑损伤后。这些实验将帮助我们将这种潜在的疗法更接近临床试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Bradbury其他文献

Creating the conditions for integrated systems of care: Learning from two large-scale approaches to changing thinking, practice and behaviour in Scotland and North West England
为综合护理系统创造条件:从苏格兰和英格兰西北部改变思维、实践和行为的两种大规模方法中学习
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather M. Shearer;Elizabeth Bradbury;June Wylie
  • 通讯作者:
    June Wylie

Elizabeth Bradbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Bradbury', 18)}}的其他基金

Technology-driven combinatorial therapy to rewire the spinal cord after injury (ReWire)
技术驱动的组合疗法可在损伤后重新连接脊髓 (ReWire)
  • 批准号:
    EP/X031497/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.63万
  • 项目类别:
    Research Grant
Regulating neuroplasticity to restore upper limb and hand function after spinal cord injury
调节神经可塑性以恢复脊髓损伤后的上肢和手部功能
  • 批准号:
    MR/V002783/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.63万
  • 项目类别:
    Research Grant
Identification of novel bioactive mediators of tissue scarring, inflammation and extracellular matrix remodeling after spinal cord injury
脊髓损伤后组织疤痕、炎症和细胞外基质重塑的新型生物活性介质的鉴定
  • 批准号:
    MR/R005532/1
  • 财政年份:
    2017
  • 资助金额:
    $ 75.63万
  • 项目类别:
    Research Grant
The role of neuregulin-1 signalling in modulating repair and functional recovery following spinal cord injury
神经调节蛋白-1信号传导在调节脊髓损伤后修复和功能恢复中的作用
  • 批准号:
    MR/P012418/1
  • 财政年份:
    2017
  • 资助金额:
    $ 75.63万
  • 项目类别:
    Research Grant
Acute and chronic spinal cord injury: novel studies of synaptogenesis, plasticity and mechanisms of repair
急性和慢性脊髓损伤:突触发生、可塑性和修复机制的新研究
  • 批准号:
    G1002055/1
  • 财政年份:
    2011
  • 资助金额:
    $ 75.63万
  • 项目类别:
    Fellowship

相似国自然基金

缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
  • 批准号:
    82370751
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
  • 批准号:
    82372202
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于甲状旁腺素重塑腱骨止点微结构及促软骨和抑瘢痕的机制研究
  • 批准号:
    82372132
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
新生期阻断谷氨酸NMDA受体对大鼠感觉运动门控和NRG1-ErbB信号系统的影响
  • 批准号:
    30800361
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
返回抑制的眼动和注意成分及其神经机制
  • 批准号:
    30770717
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

The biochemical mechanism and pharmacological inhibition of phosphatidylinositol phosphate kinases
磷脂酰肌醇磷酸激酶的生化机制及药理抑制作用
  • 批准号:
    10711064
  • 财政年份:
    2023
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Jak2 inhibition to overcome androgen receptor aberrations in prostate cancer
药理学 Jak2 抑制可克服前列腺癌中的雄激素受体畸变
  • 批准号:
    10443971
  • 财政年份:
    2022
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Jak2 inhibition to overcome androgen receptor aberrations in prostate cancer
药理学 Jak2 抑制可克服前列腺癌中的雄激素受体畸变
  • 批准号:
    10576409
  • 财政年份:
    2022
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Npt2a inhibition as a treatment for hyperphosphatemia in chronic kidney disease
药理学 Npt2a 抑制治疗慢性肾病高磷血症
  • 批准号:
    10007044
  • 财政年份:
    2021
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Npt2a inhibition as a treatment for hyperphosphatemia in chronic kidney disease
药理学 Npt2a 抑制治疗慢性肾病高磷血症
  • 批准号:
    10553084
  • 财政年份:
    2021
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Npt2a inhibition as a treatment for hyperphosphatemia in chronic kidney disease
药理学 Npt2a 抑制治疗慢性肾病高磷血症
  • 批准号:
    10293557
  • 财政年份:
    2021
  • 资助金额:
    $ 75.63万
  • 项目类别:
Exercise and pharmacological LRRK2 inhibition for preventing PD
运动和药理 LRRK2 抑制可预防 PD
  • 批准号:
    10454795
  • 财政年份:
    2020
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Mechanistic Insights into Thoracic Aortic Aneurysm
胸主动脉瘤的药理学机制见解
  • 批准号:
    10320451
  • 财政年份:
    2020
  • 资助金额:
    $ 75.63万
  • 项目类别:
Pharmacological Mechanistic Insights into Thoracic Aortic Aneurysm
胸主动脉瘤的药理学机制见解
  • 批准号:
    10532213
  • 财政年份:
    2020
  • 资助金额:
    $ 75.63万
  • 项目类别:
Exercise and pharmacological LRRK2 inhibition for preventing PD
运动和药理 LRRK2 抑制可预防 PD
  • 批准号:
    10663859
  • 财政年份:
    2020
  • 资助金额:
    $ 75.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了