AI-driven brain modelling for personalised cognitive enhancement
人工智能驱动的大脑建模,用于个性化认知增强
基本信息
- 批准号:MR/X006107/1
- 负责人:
- 金额:$ 11.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cognitive decline is a core feature of dementia and mild cognitive impairment (MCI) which combined affect over 1.3 million people costing the UK over £35 billion. There are cognitive-enhancing drugs licensed to alleviate cognitive decline in dementia and MCI. However, they provide only a modest gain to around half the people who take them, and we do not understand how to make these drugs more efficient. Artificial intelligence (AI) neural networks have shown remarkable ability to stratify patients and predict susceptibility to brain disorders, such as dementia. However, the solutions of these algorithms are often hard to interpret and inform new research and treatments. To address this, we have recently started mapping AI neural networks onto biological neural networks. In contrast to standard approaches, our AI-driven brain modelling approach enables us to map precise neuronal mechanisms onto cognitive processes in health and disease. Our models predict that specific neuromodulators enable the development of memories in biological neural networks with heightened resilience to perturbations. In this project we will use our AI-driven modelling to study how neuromodulator malfunction exacerbates the decline in cognitive function that results from neuronal death. Consequently, our model will generate specific cognitive training treatments that are optimal for reducing cognitive decline during dementia and MCI. Next, we will simulate commonly used cognitive-enhancing drugs to study why current drugs only offer modest improvements and how to best combine them with cognitive training. To perform this work, we will bring together a team of leaders in computational, fundamental, and clinical neuroscience with AI experts.Overall, this project will develop the first AI-driven brain modelling tool capable of facilitating cognitive enhancement research. This line of AI-informed research will lead to personalised treatments that will improve quality of life in dementia and MCI.
认知衰退是痴呆症和轻度认知障碍(MCI)的核心特征,这两种疾病加在一起影响了超过130万人,给英国造成了超过350亿英镑的损失。有授权的认知增强药物来缓解痴呆症和MCI的认知衰退。然而,它们只为大约一半的服用者提供了适度的收益,我们不知道如何使这些药物更有效。人工智能(AI)神经网络已经显示出显著的能力来对患者进行分层,并预测痴呆症等大脑疾病的易感性。然而,这些算法的解决方案往往很难解释,也很难为新的研究和治疗提供信息。为了解决这个问题,我们最近开始将人工智能神经网络映射到生物神经网络上。与标准方法不同,我们的人工智能驱动的大脑建模方法使我们能够将精确的神经机制映射到健康和疾病的认知过程中。我们的模型预测,特定的神经调节剂能够使生物神经网络中的记忆发展,对扰动具有更高的弹性。在这个项目中,我们将使用我们的人工智能驱动的建模来研究神经调节器故障如何加剧神经元死亡导致的认知功能下降。因此,我们的模型将产生特定的认知训练治疗,这对于减少痴呆症和MCI期间的认知衰退是最佳的。接下来,我们将模拟常用的认知增强药物,以研究为什么目前的药物只提供适度的改善,以及如何最好地将它们与认知训练结合起来。为了执行这项工作,我们将召集一个由计算、基础和临床神经科学领域的领导者与人工智能专家组成的团队。总的来说,该项目将开发第一个能够促进认知增强研究的人工智能驱动的大脑建模工具。这一系列人工智能知情研究将导致个性化治疗,从而提高痴呆症和MCI的生活质量。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cerebro-cerebellar networks facilitate learning through feedback decoupling.
- DOI:10.1038/s41467-022-35658-8
- 发表时间:2023-01-04
- 期刊:
- 影响因子:16.6
- 作者:Boven, Ellen;Pemberton, Joseph;Chadderton, Paul;Apps, Richard;Costa, Rui Ponte
- 通讯作者:Costa, Rui Ponte
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Ponte Costa其他文献
Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation
小脑驱动的皮质动力学能够实现任务获取、转换和巩固。
- DOI:
10.1038/s41467-024-55315-6 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:15.700
- 作者:
Joseph Pemberton;Paul Chadderton;Rui Ponte Costa - 通讯作者:
Rui Ponte Costa
Self-supervised predictive learning accounts for cortical layer-specificity
自我监督的预测性学习解释了皮质层特异性
- DOI:
10.1038/s41467-025-61399-5 - 发表时间:
2025-07-04 - 期刊:
- 影响因子:15.700
- 作者:
Kevin Kermani Nejad;Paul Anastasiades;Loreen Hertäg;Rui Ponte Costa - 通讯作者:
Rui Ponte Costa
Rui Ponte Costa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Ponte Costa', 18)}}的其他基金
Cerebellum-inspired parallel deep learning
受小脑启发的并行深度学习
- 批准号:
EP/X029336/1 - 财政年份:2024
- 资助金额:
$ 11.24万 - 项目类别:
Research Grant
AI-driven modelling for cortex-wide neuromodulated learning
用于全皮层神经调节学习的人工智能驱动建模
- 批准号:
BB/X013340/1 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Research Grant
Dopaminergic-cholinergic neuromodulation for rapid and democratic cortex-wide learning
多巴胺能胆碱能神经调节用于快速和民主的皮质范围学习
- 批准号:
EP/Y027841/1 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 11.24万 - 项目类别:
A PROGRESS-Driven Approach to Cognitive Outcomes after Traumatic Brain Injury: Advancing Equity, Diversity, and Inclusion through Knowledge Synthesis and Mobilization
创伤性脑损伤后认知结果的进步驱动方法:通过知识合成和动员促进公平、多样性和包容性
- 批准号:
492338 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Operating Grants
NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
- 批准号:
2319060 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Continuing Grant
HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
- 批准号:
10675341 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
- 批准号:
10676428 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
- 批准号:
10629123 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别: