Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
基本信息
- 批准号:10727356
- 负责人:
- 金额:$ 42.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3xTg-AD mouseAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloidAnimalsAppearanceAreaBiological ModelsBlood VesselsBrainBrain MappingBrain regionClinicalCognitiveComputer ModelsComputer SimulationDataDementiaDevelopmentDiagnostic ProcedureDiffusion Magnetic Resonance ImagingDiseaseEarly DiagnosisEarly InterventionEnergy consumptionEquilibriumEtiologyExhibitsFiberFunctional Magnetic Resonance ImagingGoalsHealthHealthcare SystemsHumanHyperemiaImpaired cognitionImpairmentIndividualMagnetic Resonance ImagingMapsMeasurementMeasuresMemory LossMental disordersMethodologyMethodsModalityModelingMusNeurodegenerative DisordersNeurologicNeuronsNeurosciencesNeurosciences ResearchOpticsPathologicPhotometryPsyche structurePsychiatryPsychologyQualifyingResearchResearch PersonnelRestRodentRodent ModelRoleRunningSignal TransductionSiteSynaptic TransmissionSystemTechniquesTherapeutic InterventionTimeValidationWorkbehavior testcell typecommunity settingcomputer frameworkeffective interventioneffective therapygraph theoryhealth knowledgeimprovedin vivoindependent component analysisinhibitory neuroninnovationmouse modelmultidisciplinarynervous system disorderneural circuitneural modelneuroimagingneuronal circuit disruptionneuroregulationnovelnovel diagnosticspersonalized medicinepersonalized predictionspre-clinicalpredictive modelingpublic health relevancesymptomatologytherapeutic targettooltranslational impact
项目摘要
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in
Alzheimer’s Disease using Data-driven Neural Model
Project Summary/Abstract
Alzheimer’s disease (AD) is the most common form of dementia characterized by progressive and irreversible
cognitive decline. Despite its devastating impacts on the US health care system, its precise etiology and effective
treatment options are still lacking. Recent animal studies and human neuroimaging data indicate disrupted
excitation-inhibition (E-I) balance in AD which may serve as important pathophysiological and therapeutic target.
However, existing analytical techniques in functional MRI (fMRI) do not allow for E-I mapping at cellular and
circuit levels. To overcome these limitations, we have developed a Multiscale Neural Model Inversion (MNMI)
framework based on resting-state fMRI (rs-fMRI) and diffusion MRI (dMRI) to detect circuit-level E-I imbalance
in neuronal networks underlying disease conditions. The goal of this project is to validate and refine the
MNMI framework for accurate and individualized estimation of E-I imbalance in AD.
To achieve this goal, we will pursue two specific aims. In Aim 1, we will predict disrupted E-I balance in an AD
mouse model using MNMI of rs-fMRI. We will first perform ZTE-fMRI and dMRI on wild-type (WT) control and
3xTg-AD (TG) mice. We will then apply the MNMI model to predict regional E-I balance based on rs-fMRI and
dMRI and derive areas with E-I impairments in AD mice. Based on MNMI predictions we will select four brain
regions (three with the most significant E-I impairments in TG mice plus one control region) for in vivo optical
measurements. In Aim 2, we will validate the MNMI model predictions using in vivo optical E-I measurements
and behavioral testing. We will first perform simultaneous ZTE-fMRI and fiber photometry (at the four selected
sites) in a different set of age-matched WT and TG mice as Aim 1. We will then validate the model predictions
at both individual subject and group levels and improve the MNMI framework if model predictions deviate from
empirical E-I measures. Lastly, we will examine if the E-I imbalance in TG mice is associated with cognitive
impairments. The overarching goal of our research is to combine computational modeling, fMRI, and
cutting-edge neuromodulation and recording tools to delineate pathological network activity, elucidate
the underlying circuit mechanisms, and develop more effective treatment modalities for AD. Successful
implementation of this project will lead to an innovative computational framework that serves to identify
pathological E-I imbalance using noninvasive MRI and facilitates the development of new diagnostic technique
and personalized treatment for detecting and restoring E-I imbalance in early intervention. The proposed work
is also of broader significance to the fields of neuroscience, neuroimaging, psychiatry, and psychology since
novel tools will be developed to enable the identification of E-I balance in health and imbalance in diseases.
兴奋抑制失衡的个体化预测
使用数据驱动神经模型的阿尔茨海默病
项目总结/摘要
阿尔茨海默病(Alzheimer's disease,AD)是最常见的痴呆形式,其特征是进行性和不可逆的
认知能力下降尽管它对美国医疗保健系统造成了毁灭性的影响,但其确切的病因和有效的治疗方法,
治疗方案仍然缺乏。最近的动物研究和人类神经成像数据表明,
兴奋-抑制(E-I)平衡的改变可能成为AD重要的病理生理和治疗靶点。
然而,功能性MRI(fMRI)中的现有分析技术不允许在细胞和组织上进行E-I映射。
电路水平。为了克服这些局限性,我们开发了多尺度神经模型反演(MNMI)
基于静息态fMRI(rs-fMRI)和扩散MRI(dMRI)的检测电路级E-I失衡的框架
神经元网络中潜在的疾病状况。本项目的目标是验证和完善
MNMI框架,用于准确和个性化地估计AD中的E-I失衡。
为了实现这一目标,我们将追求两个具体目标。在目标1中,我们将预测AD中E-I平衡的破坏
小鼠模型,采用rs-fMRI的MNMI。我们将首先对野生型(WT)对照进行ZTE-fMRI和dMRI,
3xTg-AD(TG)小鼠。然后,我们将应用MNMI模型来预测基于rs-fMRI的区域E-I平衡,
dMRI和导出AD小鼠中具有E-I损伤的区域。根据MNMI的预测,我们将选择四个大脑
区域(三个在TG小鼠中具有最显著的E-I损伤加上一个对照区域)用于体内光学成像。
测量.在目标2中,我们将使用体内光学E-I测量来验证MNMI模型预测
和行为测试我们将首先进行同步ZTE-fMRI和纤维光度测定(在四个选定的
位点)在不同组的年龄匹配的WT和TG小鼠中作为Aim 1。然后,我们将验证模型预测
在个体和群体层面,如果模型预测偏离
经验E-I测量。最后,我们将研究TG小鼠的E-I失衡是否与认知功能相关。
损伤我们研究的首要目标是将联合收割机计算建模、功能磁共振成像和
尖端的神经调节和记录工具来描绘病理网络活动,阐明
潜在的电路机制,并开发更有效的治疗AD的方式。成功
该项目的实施将导致一个创新的计算框架,用于识别
病理性E-I失衡,并促进新诊断技术的发展
和个性化治疗,用于早期干预中检测和恢复E-I失衡。拟议工作
对神经科学、神经影像学、精神病学和心理学领域也具有更广泛的意义,
将开发新的工具,以便能够确定健康中的E-I平衡和疾病中的不平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUOSHI LI其他文献
GUOSHI LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUOSHI LI', 18)}}的其他基金
Dynamical Mechanisms of External Tufted Cells in Olfactory Information Processing
外部簇状细胞嗅觉信息处理的动力学机制
- 批准号:
8813246 - 财政年份:2014
- 资助金额:
$ 42.76万 - 项目类别:
Dynamical Mechanisms of External Tufted Cells in Olfactory Information Processing
外部簇状细胞嗅觉信息处理的动力学机制
- 批准号:
9172652 - 财政年份:2014
- 资助金额:
$ 42.76万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 42.76万 - 项目类别:
Research Grant